The Botanical Review

, Volume 67, Issue 1, pp 74–117 | Cite as

The evolutionary ecology of nut dispersal

  • Stephen B. Vander Wall
Article

Abstract

A variety of nut-producing plants have mutualistic seed-dispersal interactions with animals (rodents and corvids) that scatter hoard their nuts in the soil. The goals of this review are to summarize the widespread horticultural, botanical, and ecological literature pertaining to nut dispersal inJuglans, Carya, Quercus, Fagus, Castanae, Castanopsis, Lithocarpus, Corylus, Aesculus, andPrunus; to examine the evolutionary histories of these mutualistic interactions; and to identify the traits of nut-bearing plants and nut-dispersing rodents and jays that influence the success of the mutualism. These interactions appear to have originated as early as the Paleocene, about 60 million years ago. Most nuts appear to have evolved from ancestors with wind-dispersed seeds, but the ancestral form of dispersal in almonds (Prunus spp.) was by frugivorous animals that ingested fruit.

Nut-producing species have evolved a number of traits that facilitate nut dispersal by certain rodents and corvids while serving to exclude other animals that act as parasites of the mutualism. Nuts are nutritious food sources, often with high levels of lipids or proteins and a caloric value ranging from 5.7 to 153.5 kJ per propagule, 10–1000 times greater than most wind-dispersed seeds. These traits make nuts highly attractive food items for dispersers and nut predators. The course of nut development tends to reduce losses of nuts to insects, microbes, and nondispersing animals, but despite these measures predispersal and postdispersal nut mortality is generally high. Chemical defenses (e.g., tannins) in the cotyledons or the husk surrounding the nut discourage some nut predators. Masting of nuts (periodic, synchronous production of large nut crops) appears to reduce losses to insects and to increase the number of nuts dispersed by animals, and it may increase cross-pollination. Scatter hoarding by rodents and corvids removes nuts from other sources of nut predation, moves nuts away from source trees where density-dependent mortality is high (sometimes to habitats or microhabitats that favor seedling establishment), and buries nuts in the soil (which reduces rates of predation and helps to maintain nut viability). The large nutrient reserves of nuts not only attract animal dispersers but also permit seedlings to establish a large photosynthetic surface or extensive root system, making them especially competitive in low-light environments (e.g., deciduous forest) and semi-arid environments (e.g., dry mountains, Mediterranean climates). The most important postestablishment causes of seedling failure are drought, insufficient light, browsing by vertebrate herbivores, and competition with forbs and grasses. Because of the nutritional qualities of nuts and the synchronous production of large nut crops by a species throughout a region, nut trees can have pervasive impacts on other members of ecological communities. Nut-bearing trees have undergone dramatic changes in distribution during the last 16,000 years, following the glacial retreat from northern North America and Europe, and the current dispersers of nuts (i.e., squirrels, jays, and their relatives) appear to have been responsible for these movements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abrahamson, W. G. &C. R. Abrahamson. 1989. Nutritional quality of animal dispersed fruits in Florida sandridge habitats. Bull. Torrey Bot. Club 116: 215–228.CrossRefGoogle Scholar
  2. Adams, J. C. &B. A. Thielges 1979. Seed sizes effects on first- and second-year pecan and hybrid pecan growth. Tree Planters’ Notes 30: 31–33.Google Scholar
  3. Aizen, M. A. &W. A. I. Patterson. 1990. Acorn size and geographical range in the North American oaks (Quercus L.). J. Biogeogr. 17: 327–332.CrossRefGoogle Scholar
  4. Ashby, K. R. 1967. Studies on the ecology of field mice and voles (Apodemus sylvaticus, Clethrionomys glareolus andMicrotus agrestis) in Houghall Wood, Durham. J. Zool. (London) 152: 389–513.Google Scholar
  5. Badenes, M. L. &D. E. Parfitt. 1995. Phylogenetic relationships of cultivatedPrunus species from an analysis of chloroplast DNA variation. Theor. Appl. Genet. 90: 1035–1041.CrossRefGoogle Scholar
  6. Baker, H. G. 1972. Seed weight in relation to environmental conditions in California. Ecology 53: 997–1010.CrossRefGoogle Scholar
  7. Barnett, R. J. 1977. The effect of burial by squirrels on germination and survival of oak and hickory nuts. Amer. Midl. Naturalist 98: 319–330.CrossRefGoogle Scholar
  8. Barrett, L. I. 1931. Influence of forest litter on the germination and early survival of chestnut oak,Quercus montana Willd. Ecology 12: 476–484.CrossRefGoogle Scholar
  9. Baumgras, P. 1944. Experimental feeding of captive fox squirrels. J. Wildlife Managern. 8: 296–300.CrossRefGoogle Scholar
  10. Beck, D. E. 1977. Twelve-year acorn yield in southern Appalachian oaks. USDA Forest Service Res. Note SE 244. Southeastern Forest Experiment Station, Asheville, NC.Google Scholar
  11. Bennett, K. D. 1985. The spread ofFagus grandifolia across eastern North America during the last 18,000 years. J. Biogeogr. 12: 147–164.CrossRefGoogle Scholar
  12. Beuchat, L. R. &R. E. Worthington. 1978. Technical note: Fatty acid composition of tree nut oils. J. Food Techn. 13: 355–358.Google Scholar
  13. Bhagat, S., O. Singh &V. Singh. 1993. Effect of seed weight on germination, survival and initial growth of horsechestnut (Aesculus indica colebr) in the nursery. Indian Forester 119: 627–629.Google Scholar
  14. Bilsing, S. W. 1931. The pecan nut case bearer. Proc. Natl. Pecan Assoc. 30: 51–57.Google Scholar
  15. Bock, W. J., R. P. Balda &S. B. Vander Wall. 1973. Morphology of the sublingual pouch and tongue musculature in Clark’s nutcracker. Auk90: 491–519.Google Scholar
  16. Bonfil, C. 1998. The effects of seed size, cotyledon reserves, and herbivory on seedling survival and growth inQuercus rugosa andQ. laurina (Fagaceae). Amer. J. Bot. 85: 79–87.CrossRefGoogle Scholar
  17. Borchert, M. I., F. W. Davis, J. Michaelsen &L. D. Oyler. 1989. Interaction of factors affecting seedling recruitment of blue oak (Quercus douglasii) in California. Ecology 70: 389–404.CrossRefGoogle Scholar
  18. Bossema, I. 1979. Jays and oaks: An eco-ethological study of a symbiosis. Behaviour 70: 1–117.CrossRefGoogle Scholar
  19. Botta, R., G. Vergano, G. Me&R. Vallania. 1995. Floral biology and embryo development in chestnut (Castanea sativa Mill.). HortScience 30: 1283–1286.Google Scholar
  20. Boucher, D. H. 1981. Seed predation by mammals and forest dominance byQuercus oleoides, a tropical lowland oak. Oecologia 49: 409–414.CrossRefGoogle Scholar
  21. — &V. L. Sork. 1979. Early drop of nuts in response to insect infestation. Oikos 33: 440–443.CrossRefGoogle Scholar
  22. Boyce, A. M. 1934. Bionomics of the walnut husk fly,Rhagoletis completa. Hilgardia 8: 363–579.Google Scholar
  23. Bradbeer, J. W. 1968. Studies in seed dormancy, IV. The role of endogenous inhibitors and gibberellin in the dormancy and germination ofCorylus avellana L. seeds. Planta 78: 266–276.CrossRefGoogle Scholar
  24. Brett, D. W. 1964. The inflorescence ofFagus andCastanea, and the evolution of the cupules of the fagaceae. New Phytol. 63: 96–118.CrossRefGoogle Scholar
  25. Briggs, J. M. &K. G. Smith. 1989. Influence of habitat on acorn selection byPeromyscus leucopus. J. Mammalogy 70: 35–43.CrossRefGoogle Scholar
  26. Brodkorb, P. 1978. Catalogue of fossil birds, part 5 (Passeriformes). Bull. Florida State Mus., Biol. Sci. 23: 139–228.Google Scholar
  27. Brookes, P. C., D. L. Wigston &W. F. Bourne. 1980. The dependence ofQuercus robur andQ. petraea seedlings on cotyledon potassium, magnesium, calcium and phosphorus during the first year of growth. Forestry 53: 167–177.CrossRefGoogle Scholar
  28. Brooks, F. E. 1922. Curculios that attack the young fruits and shoots of walnut and hickory. U.S.D.A. Bull. 1066: 1–16.Google Scholar
  29. Browitz, K. &D. Zohary. 1996. The genusAmygdalus L. (Rosaceae): Species relationships, distribution, and evolution under domestication. Genet. Resources & Crop Evol. 43: 229–247.CrossRefGoogle Scholar
  30. Brown, L. G. &L. E. Yeager. 1945. Fox squirrel and gray squirrels in Illinois. Bull. Illinois Nat. Hist. Surv. 23: 449–536.Google Scholar
  31. Burns, T. A. &C. E. Viers Jr. 1973. Caloric and moisture content values of selected fruits and mast. J. Wildlife Managern. 37: 585–587.CrossRefGoogle Scholar
  32. Cahalane, V. 1942. Caching and recovery of food by the western fox squirrels. J. Wildlife Managern. 6: 338–352.CrossRefGoogle Scholar
  33. Calcote, V. R., R. E. Hunter &T. E. Thompson. 1984. Nutrient flow through the pecan shuck into the nut and disruption of this flow by hickory shuckworm larvae. Proc. SE Pecan Growers Assoc. 77: 61–69.Google Scholar
  34. Callaway, R. M. 1992. Effect of shrubs on recruitment ofQuercus douglasii andQuercus lobata in California. Ecology 73: 2118–2128.CrossRefGoogle Scholar
  35. Carmen, W. J., W. D. Koenig &R. L. Mumme. 1987. Acorn production by five species of oaks over a seven year period at the Hastings Reservation, Carmel Valley, California. Pp. 429–434in T. R. Plumb & N. H. Pillsbury (eds.), Proceedings of the Symposium on Multiple-Use Management of California’s Hardwood Resources: November 12–14, 1986, San Luis Obispo, California. General Technical Report PSW 100. Pacific Forest and Range Experiment Station, Berkeley, CA.Google Scholar
  36. Carroll, R. L. 1988. Vertebrate paleontology and evolution. W. H. Freeman, New York.Google Scholar
  37. Chalmers, D. J. &B. Van den Ende. 1977. The relation between seed and fruit development in the peach (Prunus persica L.). Ann. Bot. (London) 41: 707–714.Google Scholar
  38. Chambers, J. C., J. A. MacMahon &J. H. Haefner. 1991. Seed entrapment in alpine ecosystems: Effects of soil particle size and diaspore morphology. Ecology 72: 1668–1677.CrossRefGoogle Scholar
  39. Chettleburgh, M. R. 1952. Observations on the collection and burial of acorns by jays in Hainault Forest. Brit. Birds 45: 359–364.Google Scholar
  40. Christisen, D. M. 1955. Yield of seed by oaks in the Missouri Ozarks. J. Forest. 53: 439–441.Google Scholar
  41. — &L. J. Korschgen. 1955. Acorn yields and wildlife usage in Missouri. Trans. N. Amer. Wildlife Conf. 20: 337–356.Google Scholar
  42. Chung, C. S., M. K. Harris &J. B. Storey. 1995. Masting in pecan. J. Amer. Soc. Hort. Sci. 120: 386–393.Google Scholar
  43. Clark, J. S. 1998. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Amer. Naturalist 152: 204–224.CrossRefGoogle Scholar
  44. Clarkson, K., S. F. Eden, W. J. Sutherland &A. I. Houston. 1986. Density dependence and magpie food hoarding. J. Animal Ecol. 55: 111–121.CrossRefGoogle Scholar
  45. Clemens, W. A. &Z. Kielan-Jaworowska. 1979. Multituberculata. Pp. 99–149in J. A. Lillegraven, Z. Kielan-Jaworowska & W. A. Clemens (eds.), Mesozoic mammals: The first two-thirds of mammalian history. University of California Press, Berkeley.Google Scholar
  46. Collada, C., I. Allona, P. Aragoncillo &C. Aragoncillo. 1993. Development of protein bodies in cotyledons ofFagus sylvatica. Physiol. Pl. (Copenhagen) 89: 354–359.CrossRefGoogle Scholar
  47. Crane, P. R. 1989. Early fossil history and evolution of the Betulaceae. Pp. 2: 87–116in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Systematics Association; Clarendon Press, Oxford.Google Scholar
  48. — &S. R. Manchester. 1982. An extinct juglandaceous fruit from the Upper Paleocene of southern England. Bot. J. Linn. Soc. 85: 89–101.CrossRefGoogle Scholar
  49. Crawley, M. J. &C. R. Long. 1995. Alternate bearing, predator satiation and seedling recruitment inQuercus robur L. J. Ecol. 83: 683–696.CrossRefGoogle Scholar
  50. Crepet, W. L. 1989. History and implications of the early North American fossil record of Fagaceae. Pp. 2: 45–66in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Systematics Association; Clarendon Press, Oxford.Google Scholar
  51. — &K. C. Nixon. 1989. Earliest megafossil evidence of Fagaceae: Phylogenetic and biogeographic implications. Amer. J. Bot. 76: 842–855.CrossRefGoogle Scholar
  52. Criswell, J. T., D. J. Boethel, R. D. Morrison &R. D. Eikenbary. 1975. Longevity, puncturing of nuts, and ovipositional activities by the pecan weevil on three cultivars of pecans. J. Econ. Entomol. 68: 173–177.Google Scholar
  53. Crow, T. R. 1988. Reproductive mode and mechanisms for self-replacement of northern red oak (Quercus rubra): A review. Forest Sci. 34: 19–40.Google Scholar
  54. Cypert, E. &B. S. Webster. 1948. Yield and use by wildlife of acorns of water and willow oaks. J. Wildlife Managern. 12: 227–231.Google Scholar
  55. Darley-Hill, S. &W. C. Johnson. 1981. Acorn dispersal by blue jays (Cyanocitta cristata). Oecologia 50: 231–232.CrossRefGoogle Scholar
  56. Davis, M. B. 1981. Quaternary history and the stability of forest communities. Pp. 132–153in D. C. West, H. H. Shugart & D. B. Botkin (eds.), Forest succession: Concepts and application. Springer-Verlag, New York.Google Scholar
  57. K. D. Woods, S. L. Webb &R. P. Futyma. 1986. Dispersal versus climate expansion ofFagus andTsuga into the Upper Great Lakes region. Vegetatio 67: 93–103.CrossRefGoogle Scholar
  58. Deen, R. T. &J. D. Hodges. 1991. Oak regeneration in abandoned fields: Presumed role of the blue jay. Pp. 84–93in S. S. Coleman & D. G. Neary (comps.), Proceedings of the Sixth Biennial Southern Silvicultural Research Conference: Memphis, Tennessee, October 30–November 1, 1990. Southeastern Forest Experiment Station, Asheville, NC.Google Scholar
  59. DeGange, A. R., J. W. Fitzpatrick, J. N. Layne &G. E. Woolfenden. 1989. Acorn harvesting by Florida scrub jays. Ecology 70: 348–356.CrossRefGoogle Scholar
  60. Del Tredici, P. 1989. Ginkgos and multituberculates: Evolutionary interactions in the Tertiary. BioSystems 22: 327–339.PubMedCrossRefGoogle Scholar
  61. Delcourt, H. R. &P. A. Delcourt. 1984. Ice age haven for hardwoods. Nat. Hist. 93: 22–28.Google Scholar
  62. Delcourt, P. A. &H. R. Delcourt. 1987. Long-term forest dynamics of the temperate zone: A case study of late-Quaternary forests in eastern North America. Ecological Studies, 63. Springer-Verlag, New York.Google Scholar
  63. Dennis, W. 1930. Rejection of wormy nuts by squirrels. J. Mammillaria Soc. 11: 195–201.Google Scholar
  64. Dickson, R. E., J. G. Isebrands &P. T. Tomlinson. 1990. Distribution and metabolism of current photosynthate by single-flush northern red oak seedlings. Tree Physiol. 7: 65–77.PubMedGoogle Scholar
  65. Dixon, M. D., W. C. Johnson &C. S. Adkisson. 1997a. Effects of caching on acorn tannin levels and blue jay dietary performance. Condor 99: 756–764.CrossRefGoogle Scholar
  66. ———. 1997b. Effects of weevil larvae on acorn use by blue jays. Oecologia 111: 201–208.CrossRefGoogle Scholar
  67. Dohanian, S. M. 1944. Control of the filbert worm and filbert weevil by orchard sanitation. J. Econ. Entomol. 37: 764–766.Google Scholar
  68. Downs, A.A. &W. E. McQuillen. 1944. Seed production of southern Appalachian oaks. J. Forest. 42: 913–920.Google Scholar
  69. Drossopoulos, J. B., G. G. Kouchaji &D. L. Bouranis. 1996. Seasonal dynamics of mineral nutrients by walnut tree fruits. J. Pl. Nutr. 19: 435–455.Google Scholar
  70. Drozdz, A. 1968. Digestibility and assimilation of natural foods in small rodents. Acta Theriol. 13: 367–389.Google Scholar
  71. Elias, T. S. 1971. The genera of Fagaceae in the southeastern United States. J. Arnold Arbor. 52: 159–191.Google Scholar
  72. Elkinton, J. S., W. H. Healy, J. P. Buonacorsi, G. H. Boettner, A. M. Hazzard, H. R. Smith &A. M. Liebhold. 1996. Interactions among gypsy moth, white-footed mice, and acorns. Ecology 77: 2332–2342.CrossRefGoogle Scholar
  73. Emry, R. J. &R. W. Thorington Jr. 1984. The tree squirrelSciurus (Sciuridae, Rodentia) as a living fossil. Pp. 23–31in N. Eldridge & S. M. Stanley (eds.), Living fossils. Springer-Verlag, New York.Google Scholar
  74. Eriksson, O., E. M. Friis &P. Löfgren. 2000. Seed size, fruit size, and dispersal systems in angiosperms from the early Cretaceous to the late Tertiary. Amer. Naturalist 156: 47–58.CrossRefGoogle Scholar
  75. Farmer, R. E., Jr. 1981. Variation in seed yield of white oak. Forest Sci. 27: 377–380.Google Scholar
  76. Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565–581.CrossRefGoogle Scholar
  77. Feret, P. P., R. E. Kreh, S. A. Merkle &R. G. Oderwald. 1982. Flower abundance, premature acorn abscission, and acorn production inQuercus alba L. Bot. Gaz. (Crawfordsville) 143: 216–218.CrossRefGoogle Scholar
  78. Fey, B. S. &P. K. Endress. 1983. Development and morphological interpretation of the cupule in Fagaceae. Flora 173: 451–468.Google Scholar
  79. Finch-Savage, W. E. 1992. Embryo water status and survival in the recalcitrant speciesQuercus robur L.: Evidence for a critical moisture content. J. Exp. Bot. 43: 663–669.CrossRefGoogle Scholar
  80. — &H. A. Clay. 1994. Water relations of germination in the recalcitrant seeds ofQuercus robur L. Seed Sci. Res. 4: 315–322.Google Scholar
  81. Fleck, D. C. &J. N. Layne. 1990. Variation in tannin activity of acorns of seven species of central Florida oaks. J. Chem. Ecol. 16: 2925–2934.CrossRefGoogle Scholar
  82. — &D. F. Tomback. 1996. Tannin and protein in the diet of a food-hoarding granivore, the western scrub-jay. Condor 98: 474–482.CrossRefGoogle Scholar
  83. Flowerdew, J. R. 1972. The effect of supplemental food on a population of wood mice (Apodemus sylvaticus). J. Animal Ecol. 41: 553–566.CrossRefGoogle Scholar
  84. Forget, P.-M. 1991. Scatterhoarding ofAstrocaryum paramaca byProechimys in French Guiana: Comparison withMyoprocta exilis. Trop. Ecol. 32: 155–167.Google Scholar
  85. — 1992. Seed removal and seed fate inGustavia superba (Lecythidaceae). Biotropica 24: 408–414.CrossRefGoogle Scholar
  86. — 1993. Post-dispersal predation and scatterhoarding ofDipteryx panamensis (Papilionaceae) seeds by rodents in Panama. Oecologia 94: 255–261.CrossRefGoogle Scholar
  87. Forman, L. L. 1966. On the evolution of cupules in the Fagaceae. Kew Bull. 18: 385–419.CrossRefGoogle Scholar
  88. Formozov, A. N. 1933. The crop of cedar nuts, invasion into Europe of the Siberian nutcracker (Nucifraga caryocatactes macrorhynchus Brehm) and fluctuations in numbers of the squirrel (Sciurus vulgaris L.). J. Animal Ecol. 2: 70–81.CrossRefGoogle Scholar
  89. Foster, S. A. 1986. On the adaptive value of large seeds for tropical moist forest trees: A review and synthesis. Bot. Rev. (Lancaster) 52: 260–299.CrossRefGoogle Scholar
  90. Fox, J. F. 1982. Adaptation of gray squirrel behavior to autumn germination by white oak acorns. Evolution 36: 800–809.CrossRefGoogle Scholar
  91. Garrot, D. J., Jr.,M. W. Kilby, D. D. Fangmeier, S. H. Husman &A. E. Ralowicz. 1993. Production, growth, and nut quality in pecans under water stress based on the crop water stress index. J. Amer. Soc. Hort. Sci. 118: 694–698.Google Scholar
  92. Gemoets, E. E., L. A. Gemoets, T. E. Cannon &R. G. McIntyre. 1976. Cycles in U.S. pecan production 1919–1974 identified by power spectral analysis. J. Amer. Soc. Hort. Sci. 101: 550–553.Google Scholar
  93. Gibson, L. P. 1964. Biology and life history of acorn-infesting weevils of the genusConotrachelus (Coleoptera: Curculionidae). Bull. Ent. Soc. Amer. 57: 521–526.Google Scholar
  94. — 1971. Insects of bur oak acorns. Bull. Ent. Soc. Amer. 64: 232–234.Google Scholar
  95. — 1972. Insects that damage white oak acorns. USDA Forest Service Res. Paper NE 220. Northeastern Forest Experiment Station, Upper Darby, PA.Google Scholar
  96. Goldstein, J. L. &T. Swain. 1965. The inhibition of enzymes by tannins. Phytochemistry 4: 185–192.CrossRefGoogle Scholar
  97. Goodrum, P. D., V. H. Reid &C. E. Boyd. 1971. Acorn yields, characteristics, and management criteria of oaks for wildlife. J. Wildlife Managern. 35: 520–532.CrossRefGoogle Scholar
  98. Gordon, D. R., J. M. Welker, J. W. Menke &K. J. Rice. 1989. Competition for soil water between annual plants and blue oak (Quercus douglasii) seedlings. Oecologia 79: 533–541.CrossRefGoogle Scholar
  99. Gosling, P. G. 1989. The effect of dryingQuercus robur acorns to different moisture contents followed by storage, either with or without imbibition. Forestry 62: 41–50.CrossRefGoogle Scholar
  100. Gottschalk, K. W. 1990. Gypsy moth effects on mast production. Pp. 42–50in C. E. McGee (ed.), Proceedings of the Workshop on Southern Appalachian Mast Management. University of Tennessee, Knoxville.Google Scholar
  101. Grey, G. W. &G. G. Naughton. 1971. Ecological observations on the abundance of black walnut in Kansas. J. Forest. 69: 741–743.Google Scholar
  102. Griffin, J. R. 1971. Oak regeneration in the upper Carmel Valley, California. Ecology 52: 862–868.CrossRefGoogle Scholar
  103. Grime, J. P. &D. W. Jeffrey. 1965. Seedling establishment in vertical gradients of sunlight. J. Ecol. 53: 621–642.CrossRefGoogle Scholar
  104. Grodzinski, W. &K. Sawicka-Kapusta. 1970. Energy value of tree seeds eaten by small mammals. Oikos 21: 52–58.CrossRefGoogle Scholar
  105. Grubb, P. J., W. G. Lee, J. Kollmann &J. Bastow Wilson. 1996. Interaction of irradiance and soil nutrient supply on growth of seedlings of ten European tall-shrub species andFagus sylvatica. J. Ecol. 84: 827–840.CrossRefGoogle Scholar
  106. Gysel, L. W. 1956. Measurement of acorn crops. Forest Sci. 2: 305–313.Google Scholar
  107. — 1957. Acorn production on good, medium, and poor oak sites in southern Michigan. J. Forest. 55: 570–574.Google Scholar
  108. — 1971. A 10-year analysis of beechnut production and use in Michigan. J. Wildlife Managern. 35: 516–519.CrossRefGoogle Scholar
  109. Hagerup, O. 1942. The morphology and biology of theCorylus-fruit. Biol. Meddel. Kongel. Danske Vidensk. Selsk. 17: 1–33.Google Scholar
  110. Hallwachs, W. 1986. Agoutis (Dasyprocta punstata): The inheritors of guapinol (Hymenaea courbaril: Leguminosae). Pp. 285–304in A. Estrada and T. H. Fleming (eds.), Frugivores and seed dispersal. W. Junk, Dordrecht, Netherlands.Google Scholar
  111. Hammar, H. E. &J. H. Hunter. 1946. Some physical and chemical changes in the composition of pecan nuts during kernel filling. Pl. Physiol. (Lancaster) 21: 476–491.Google Scholar
  112. Hannon, S. J., R. L. Mumme, W. D. Koenig, S. Spon &F. A. Pitelka. 1987. Acorn crop failure, dominance, and a decline in numbers in the cooperatively breeding acorn woodpecker. J. Animal Ecol. 56: 197–207.CrossRefGoogle Scholar
  113. Hansen, L. P. &G. O. Batzli. 1978. The influence of food availability on the white-footed mouse: Populations in isolated woodlots. Canad. J. Zool. 56: 2530–2541.CrossRefGoogle Scholar
  114. — 1979. Influence of supplemental food on local populations ofPeromyscus leucopus. J. Mammillaria Soc. 60: 335–342.Google Scholar
  115. Hardin, J. W. 1955. Studies in the Hippocastanaceae, I. Variation within the mature fruit ofAesculus. Rhodora 57: 37–42.Google Scholar
  116. — 1957. A revision of the American Hippocastanaceae. Brittonia 9: 145–171.CrossRefGoogle Scholar
  117. Harley, J. L. 1939. The early growth of beech seedlings under natural and experimental conditions. J. Ecol. 27: 384–400.CrossRefGoogle Scholar
  118. Harlow, R. F., J. B. Whelan, S. C. Hewlette &J. E. Skeen. 1975. Deer foods during years of oak mast abundance and scarcity. J. Wildlife Managern. 39: 330–336.CrossRefGoogle Scholar
  119. Harper, J. L., P. H. Lovell &K. G. Moore. 1970. The shapes and sizes of seeds. Ann. Rev. Ecol. Syst. 1: 327–356.CrossRefGoogle Scholar
  120. Harrison, J. S. &P. A. Werner. 1984. Colonization by oak seedlings into a heterogeneous successional habitat. Canad. J. Bot. 62: 559–563.Google Scholar
  121. Haslam, E. 1988. Plant polyphenols (syn. vegetable tannins) and chemical defense: A reappraisal. J.Chem. Ecol. 14: 1789–1805.CrossRefGoogle Scholar
  122. Havera, S. P. &K. E. Smith. 1979. A nutritional comparison of selected fox squirrel foods. J. Wildlife Managern. 43: 691–704.CrossRefGoogle Scholar
  123. Heaney, L. R. &R. W. Thorington Jr. 1978. Ecology of neotropical red-tailed squirrels,Sciurusgranatensis, in the Panama Canal Zone. J. Mammillaria Soc. 59: 846–851.Google Scholar
  124. Herrera, C. M. &P. Jordano. 1981.Prunus mahaleb and birds: The high-efficiency seed dispersal system of a temperate fruiting tree. Ecol. Monogr. 51: 203–218.CrossRefGoogle Scholar
  125. Herrera, J. 1995. Acorn predation and seedling production in a low-density population of cork oak (Quercus suber L.). Forest. Ecol. Managern. 76: 197–201.CrossRefGoogle Scholar
  126. Hewitt, N. 1998. Seed size and shade-tolerance: A comparative analysis of North American temperate trees. Oecologia 114: 432–440.CrossRefGoogle Scholar
  127. Higuchi, H. 1977. Stored nutsCastanopsis cuspidata as a food resource of nestling varied titsParus varius. Tori 26: 9–12.Google Scholar
  128. Hopper, G. M., D. W. Smith &D. J. Parrish. 1985. Germination and seedling growth of northern red oak: Effects of stratification and pericarp removal. Forest Sci.31: 31–39.Google Scholar
  129. Hoshizaki, K., W. Suzuki &S. Sasaki. 1997. Impacts of secondary seed dispersal and herbivory on seedling survival inAesculus turbinata. J. Veg. Sci. 8: 735–742.CrossRefGoogle Scholar
  130. —— &T. Nakashizuka. 1999. Evaluation of secondary dispersal in a large-seeded treeAesculus turbinata: A test of directed dispersal. Pl. Ecol. 144: 167–176.CrossRefGoogle Scholar
  131. Hubbard, J. A. &G. R. McPherson. 1997. Acorn selection by Mexican jays: A test of a tri-trophic symbiotic relationship hypothesis. Oecologia 110: 143–146.CrossRefGoogle Scholar
  132. Hughes, J. W. &T. J. Fahey. 1988. Seed dispersal and colonization in a disturbed northern hardwood forest. Bull. Torrey Bot. Club 115: 89–99.CrossRefGoogle Scholar
  133. Huntley, B. 1988. Europe. Pp. 341–383in B. Huntley & T. Webb III (eds.), Vegetation history. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
  134. Iida, S. 1996. Quantitative analysis of acorn transportation by rodents using magnetic locator. Vegetatio 124: 39–43.CrossRefGoogle Scholar
  135. Ims, R. A. 1990. On the adaptive value of reproductive synchrony as a predator-swamping strategy. Amer. Naturalist 136: 485–498.CrossRefGoogle Scholar
  136. Jacobs, L. F. 1992. The effect of handling time on the decision to cache by grey squirrels. Animal Behavior 43: 522–524.CrossRefGoogle Scholar
  137. — &E. R. Liman. 1991. Grey squirrels remember the locations of buried nuts. Animal Behavior 41: 103–110.CrossRefGoogle Scholar
  138. Janzen, D. 1971. Seed predation by animals. Ann. Rev. Ecol. Syst. 2: 465–492.CrossRefGoogle Scholar
  139. — 1986. Seeds as products. Oikos 46: 1–2.CrossRefGoogle Scholar
  140. Jarvis, B. C. 1975. The role of seed parts in the induction of dormancy of hazel (Corylus avellana L.). New Phytol. 75: 491–494.CrossRefGoogle Scholar
  141. Jarvis, P. G. 1963. The effects of acorn size and provenance on the growth of seedlings of sessile oak. Quart. J. Forest. 57: 11–19.Google Scholar
  142. Jennings, T. J. 1976. Seed detection by the wood mouseApodemus sylvaticus. Oikos 27: 174–177.CrossRefGoogle Scholar
  143. Jensen, T. S. 1982. Seed production and outbreaks of non-cyclic rodent populations in deciduous forests. Oecologia 54: 184–192.CrossRefGoogle Scholar
  144. — 1985. Seed-seed predator interactions of European beech,Fagus silvatica and forest rodents,Clethrionomys glareolus andApodemus flavicollis. Oikos 44: 149–156.CrossRefGoogle Scholar
  145. — &O. F. Nielsen. 1986. Rodents as seed dispersers in a heath-oak wood succession. Oecologia 70: 214–221.CrossRefGoogle Scholar
  146. Johnson, W. C. &C. S. Adkisson. 1985. Dispersal of beech nuts by blue jays in fragmented landscapes. Amer. Midl. Naturalist 113: 319–324.CrossRefGoogle Scholar
  147. — &T. Webb III. 1989. The role of blue jays (Cyanocitta cristata L.) in the postglacial dispersal of fagaceous trees in eastern North America. J. Biogeogr. 16: 561–571.CrossRefGoogle Scholar
  148. —,D. M. Sharpe, D. L. DeAngelis, D. E. Fields &R. J. Olson. 1981. Modeling seed dispersal and forest island dynamics. Pp. 215–239in R. L. Burgess & D. M. Sharpe (eds.), Forest island dynamics in man-dominated landscapes. Springer-Verlag, New York.Google Scholar
  149. —,L. Thomas &C. S. Adkisson. 1993. Dietary circumvention of acorn tannins by blue jays: Implications for oak demography. Oecologia 94: 159–164.CrossRefGoogle Scholar
  150. — 1997. Nut caching by blue jays (Cyanocitta cristata L.): Implications for tree demography. Amer. Midl. Naturalist 138: 357–370.CrossRefGoogle Scholar
  151. Jones, C. G., R. S. Ostfeld, M. P. Richard, E. M. Schauber &J. O. Wolff 1998. Chain reactions linking acorns to gypsy moth outbreaks and lyme disease risk. Science 279: 1023–1026.PubMedCrossRefGoogle Scholar
  152. Kältender, H. 1978. Hoarding in the rookCorvus frugilegus. Anser Suppl. 3: 124–128.Google Scholar
  153. Kamil, A. C. &R. P. Balda. 1985. Cache recovery and spatial memory of Clark’s nutcracker (Nucifraga columbiana). J. Exp. Psychol., Animal Behavior Proc. 11: 95–111.CrossRefGoogle Scholar
  154. Kato, J. 1985. Food and hoarding behavior of Japanese squirrels. Jap. J. Ecol. 35: 13–20.Google Scholar
  155. Kaul, R. B. 1985. Reproductive morphology ofQuercus (Fagaceae). Amer. J. Bot. 72: 1962–1977.CrossRefGoogle Scholar
  156. — 1986. Evolution and reproductive biology of inflorescences inLithocarpus, Castanopsis, Castanea, andQuercus (Fagaceae). Ann. Missouri Bot. Gard. 73: 284–296.CrossRefGoogle Scholar
  157. — 1987. Reproductive structures ofLithocarpus senso lato (Fagaceae): Cymules and fruits. J. Arnold Arbor. 68: 73–104.Google Scholar
  158. — 1988. Cupular structure in paleotropicalCastanopsis (Fagaceae). Ann. Missouri Bot. Gard. 75: 1480–1498.CrossRefGoogle Scholar
  159. — 1989. Fruit structure and ecology in paleotropicalLithocarpus (Fagaceae). Pp. 67–86in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Systematics Association; Clarendon Press, Oxford.Google Scholar
  160. Kautz, L. G. &F. G. Liming. 1939. Notes on the 1937 and 1938 acorn crops in the Missouri Ozarks. J. Forest. 37: 904.Google Scholar
  161. Kelly, D. 1994. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9: 465–470.CrossRefGoogle Scholar
  162. Kenward, R. E. &J. L. Holm. 1993. On the replacement of the red squirrel in Britain: A phytotoxic explanation. Proc. Roy. Soc. London 251: 187–194.CrossRefGoogle Scholar
  163. Kester, D. E., T. M. Gradziel &C. Grasselly. 1991. Almonds (Prunus). Acta Hort. 290: 701–758.Google Scholar
  164. Kikuzawa, K. 1988. Dispersal ofQuercus mongolica acorns in a broadleaved deciduous forest, 1. Disappearance. Forest. Ecol. Managern. 25: 1–8.CrossRefGoogle Scholar
  165. Koenig, W. D. 1991. The effect of tannins and lipids on digestion of acorns by acorn woodpeckers. Auk 108: 79–88.Google Scholar
  166. — 1998. Effects of storage on tannin and protein content of cached acorns. Southw. Naturalist 43: 170–175.Google Scholar
  167. —. 1988. Ability of two species of oak woodland birds to subsist on acorns. Condor 90: 705–708.CrossRefGoogle Scholar
  168. —. 1998. Testing for spatial autocorrelation in ecological studies. Ecography 21: 423–429.CrossRefGoogle Scholar
  169. ——. 2000. Patterns of annual seed production by northern hemisphere trees: A global perspective. Amer. Naturalist 155: 59–69.CrossRefGoogle Scholar
  170. -& -. In press. The behavioral ecology of masting in oaks.In W. McShea & W. Healy (eds.), Oak forest ecosystems. Johns Hopkins University Press, Baltimore.Google Scholar
  171. — &R. L. Mumme. 1987. Population ecology of the cooperatively breeding acorn woodpecker. Princeton University Press, Princeton, NJ.Google Scholar
  172. —,W. J. Carmen, M. T. Stanback &R. L. Mumme. 1991. Determinants of acorn productivity among five species of oak in central coastal California. Pp. 136–142in Proceedings of the Symposium on Oak Woodlands and Hardwood Rangeland Management, October 31 –November 2, 1990, Davis, California. General Technical Report PSW 126. U.S. Dept. of Agriculture, Pacific Southwest Research Station, Berkeley, CA.Google Scholar
  173. —. 1994. Acorn production by oaks in central coastal California: variation within and among years. Ecology 75: 99–109.CrossRefGoogle Scholar
  174. —,W. J. Carmen, M. T. Stanback &R. L. Mumme. 1996. Acorn production by oaks in central coastal California: Influence of weather at three levels. Canad. J. Forest Res. 26: 1677–1683.CrossRefGoogle Scholar
  175. Korstian, C. F. 1927. Factors controlling germination and early survival in oaks. Bull. Yale Univ. School Forest. 19: 1–115.Google Scholar
  176. Krause, D. W. 1982. Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus. Paleobiology 8: 265–281.Google Scholar
  177. Kubitzki, K. 1993. Betulaceae. Pp. 152–157in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin.Google Scholar
  178. Lagerstedt, H. B. 1977. The occurrence of blanks in the filbertCorylus avellana L. and possible causes. Econ. Bot. 31: 153–159.Google Scholar
  179. Lal, H., M. C. Nautiyal &R. M. Sharma. 1984. Walnut (Juglans regia) seed germination, I. Effect of planting depth and seed position in soil. Progr. Hort. 16: 6–8.Google Scholar
  180. Lanner, R. M. 1982. Adaptations of whitebark pine seed dispersal by Clark’s nutcracker. Canad. J. Forest Res. 12: 391–402.Google Scholar
  181. — 1998. Seed dispersal inPinus. Pp. 281–295in D. M. Richardson (ed.), Ecology and biogeography of pines. Cambridge University Press, Cambridge, England.Google Scholar
  182. Levin, D. A. 1974. The oil content of seeds: An ecological perspective. Amer. Naturalist 108: 193–206.CrossRefGoogle Scholar
  183. Lewis, A. R. 1982. Selection of nuts by gray squirrels and optimal foraging theory. Amer. Midl. Naturalist 107: 250–257.CrossRefGoogle Scholar
  184. Lewis, I. M. 1911. The seedlings ofQuercus virginiana. Pl. World 14: 119–123.Google Scholar
  185. Lewis, R. D. &J. H. Hunter. 1944. Changes in some mineral constituents of pecan nuts and their supporting shoots during development. J. Agric. Res. 68: 299–306.Google Scholar
  186. Linsdale, J. M. 1946. The California ground squirrel. University of California Press, Berkeley.Google Scholar
  187. Lloyd, H. G. 1968. Observations on nut selection by a hand-reared grey squirrel (Sciurus carolinensis). J. Zool. (London) 155: 240–244.Google Scholar
  188. Macdonald, I. M. V. 1997. Field experiments on duration and precision of grey and red squirrel spatial memory. Animal Behavior 54: 879–891.CrossRefGoogle Scholar
  189. Madsen, P. 1995a. Effects of seedbed type on wintering of beech nuts (Facus sylvatica) and deer impact on sprouting seedlings in natural regeneration. Forest Ecol. Managern. 73: 37–43.CrossRefGoogle Scholar
  190. — 1995b. Effects of soil water content, fertilization, light, weed competition and seedbed type on natural regeneration of beech (Fagus sylvatica). Forest. Ecol. Managern. 72: 251–264.CrossRefGoogle Scholar
  191. Mailliard, J. 1931. Redwood chickaree testing and storing hazel nuts. J. Mammalogy 12: 68–70.Google Scholar
  192. Manchester, S. R. 1987. The fossil history of the Juglandaceae. Monogr. Syst. Bot., 21. Missouri Botanical Garden, Saint Louis.Google Scholar
  193. — &P. R. Crane. 1983. Attached leaves, inflorescences, and fruits ofFagopsis, an extinct genus of fagaceous affinity from the Oligocene florissant flora of Colorado, U.S.A. Amer. J. Bot. 70: 1147–1164.CrossRefGoogle Scholar
  194. Manning, W. E. 1940. The morphology of the flowers of the juglandaceae: The pistillate flowers and fruit. Amer. J. Bot. 27: 839–852.CrossRefGoogle Scholar
  195. — 1978. The classification within the Juglandaceae. Ann. Missouri Bot. Gard. 65: 1058–1087.CrossRefGoogle Scholar
  196. Martin, M. M. &J. S. Martin. 1984. Surfactants: Their role in preventing the precipitation of proteins by tannins in insect guts. Oecologia 61: 342–345.CrossRefGoogle Scholar
  197. Mason, S. C. 1913. The pubescent-fruited species ofPrunus of the southwestern states. J. Agric. Res. 1: 147–177.Google Scholar
  198. Matsuda, K. &J. R. McBride. 1986. Difference in seedling growth morphology as a factor in the distribution of three oaks in central California. Madroño 33: 207–216.Google Scholar
  199. McCarthy, B. C. 1994. Experimental studies of hickory recruitment in a wooded hedgerow and forest. Bull. Torrey Bot. Club 121: 240–250.CrossRefGoogle Scholar
  200. — &D. R. Bailey. 1992. Seed germination and seedling establishment ofCatya floridana (Sarg.) Small (Juglandaceae). Bull. Torrey Bot. Club 119: 384–391.CrossRefGoogle Scholar
  201. — &F. I. Meredith. 1988. Nutrient data on chestnuts consumed in the United States. Econ. Bot. 42: 29–36. 215–228.Google Scholar
  202. — &J. A. Quinn. 1989. Within- and among-tree variation in flower and fruit production in two species ofCatya (Juglandaceae). Amer. J. Bot. 76: 1015–1023.CrossRefGoogle Scholar
  203. —. 1992. Fruit maturation patterns of Carya spp. (Juglandaceae): An intra-crown analysis of growth and reproduction. Oecologia 91: 30–38.Google Scholar
  204. McComb, A. L. 1934. The relation between acorn weight and the development of one year chestnut oak seedlings. J. Forest. 32: 479–484.Google Scholar
  205. McCreary, D. D. 1989. Regenerating native oaks in California. Calif. Agric. 42 (1): 4–6.Google Scholar
  206. McGranahan, G. &C. Leslie. 1991. Walnuts (Juglans). Acta Hort. 290: 907–951.Google Scholar
  207. McKay, J. W. 1942. Self-sterility in the Chinese chestnut (Castanea mollissima). Proc. Amer. Soc. Hort. Sci. 41: 156–160.Google Scholar
  208. — 1947. Embryology of pecans. J. Agric. Res. 74: 263–283.Google Scholar
  209. McMeans, J. L. &H. M. Malstrom. 1982. Relationship between pecan yields and the quality and quantity of oil in nutmeats. HortScience 17: 69–70.Google Scholar
  210. McNair, J. B. 1929. The taxonomic and climatic distribution of oils, fats, and waxes in plants. Amer. J. Bot. 16: 832–841.CrossRefGoogle Scholar
  211. McPherson, G. R. 1993. Effects of herbivory and herb interference on oak establishment in a semi-arid temperate savanna. J. Veg. Sci. 4: 687–692.CrossRefGoogle Scholar
  212. McQuilkin, R. A. &R. A. Musbach. 1977. Pin oak acorn production on green tree reservoirs in southeastern Missouri. J. Wildlife Managern. 41: 218–225.CrossRefGoogle Scholar
  213. McShea, W. J. 2000. The influence of acorn crops on annual variation in rodent and bird populations. Ecology 81: 228–238.CrossRefGoogle Scholar
  214. — &G. Schwede. 1993. Variable acorn crops: Responses of white-tailed deer and other mast consumers. J. Mammillaria Soc. 74: 999–1006.Google Scholar
  215. Me, G., E. Emanuel, R. Botta &R. Ballania. 1989. Embryo development in “Tonda Gentile della Langhe” hazelnut. HortScience 24: 122–125.Google Scholar
  216. Mehlenbacher, S. A. 1991. Hazelnuts (Corylus). Acta Hort. 290: 791–836.Google Scholar
  217. Michelbacher, A. E. &J. C. Ortega. 1958. A technical study of insects and related pests attacking walnuts. Calif. Agric. Exp. Sta. Bull. 764: 1–86.Google Scholar
  218. Mirocha, C. J. &E. E. Wilson. 1961. Hull rot disease of almonds. Phytopathology 51: 843–847.Google Scholar
  219. Miyaki, M. &K. Kikuzawa. 1988. Dispersal ofQuercus mongolica acoms in a broadleaved deciduous forest, 2. Scatterhoarding by mice. Forest Ecol. Managern. 25: 9–16.CrossRefGoogle Scholar
  220. Monk, C. D. 1981. Age structure ofCarya tomentosa (Poir.) Nutt. in a young oak forest. Amer. Midl. Naturalist 106: 189–191.CrossRefGoogle Scholar
  221. Moznette, G. F., C. B. Nickels, W. C. Pierce, T. L. Bissell, J. B. Demaree, J. R. Cole, H. E. Parson &J. R. Large. 1940. Insects and diseases of the pecan and their control. Fanners’ Bull. 1829. U.S. Department of Agriculture, Washington, DC.Google Scholar
  222. Muul, I. 1970. Daylength and food caches. Pp. 78–86in Field studies in natural history. Van Nostrand Reinhold, New York.Google Scholar
  223. Myster, R. W. &B. C. McCarthy. 1989. Effects of herbivory and competition on survival ofCarya tomentosa (Juglandaceae) seedlings. Oikos 56: 145–148.CrossRefGoogle Scholar
  224. Nast, C. G. 1935. Morphological development of the fruit ofJuglans regia. Hilgardia 9: 345–381.Google Scholar
  225. Neilson, R. P. &L. H. Wullstein. 1980. Catkin freezing and acorn production in Gambel oak in Utah, 1978. Amer. J. Bot. 67: 426–428.CrossRefGoogle Scholar
  226. Nielsen, B. O. 1977. Beech seeds as an ecosystem component. Oikos 29: 268–274.CrossRefGoogle Scholar
  227. Nilsson, S. G. 1985. Ecological and evolutionary interactions between reproduction of beechFagus sylvatica and seed eating animals. Oikos 44: 157–164.CrossRefGoogle Scholar
  228. — &U. Wästljung. 1987. Seed predation and cross-pollination in mast-seeding beech (Fagus sylvatica) patches. Ecology 68: 260–265.CrossRefGoogle Scholar
  229. Nixon, K. C. 1989. Origins of Fagaceae. Pp. 23–43in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Systematics Association; Clarendon Press, Oxford.Google Scholar
  230. Nyandiga, C. O. &G. R. McPherson. 1992. Germination of two warm-temperate oaks,Quercus emoryi andQuercus arizonica. Canad. J. Forest Res. 22: 1395–1401.Google Scholar
  231. Ofcarcik, R. P. &E. E. Burns. 1971. Chemical and physical properties of selected acorns. J. Food Sci. 36: 576–578.CrossRefGoogle Scholar
  232. Oliver, A. D. &J. B. Chapin. 1984.Curculio fulvus (Coleoptera: Curculionidae) and its effects on acorns of live oak,Quercus virginiana Miller. Environm. Entomol. 13: 1507–1510.Google Scholar
  233. Olmsted, C. E. 1937. Vegetation of certain sand plains of Connecticut. Bot. Gaz. (Crawfordsville) 99: 209–300.CrossRefGoogle Scholar
  234. Ostfeld, R. S., C. G. Jones &J. O. Wolff. 1996. Of mice and mast. BioScience 46: 323–330.CrossRefGoogle Scholar
  235. Ovington, J. D. &C. MacRae. 1960. The growth of seedlings ofQuercus petraea. J. Ecol. 48: 549–555.CrossRefGoogle Scholar
  236. Paillet, F. L. &P. A. Rutter. 1989. Replacement of native oak and hickory tree species by the introduced American chestnut (Castanea dentata) in southwestern Wisconsin. Canad. J. Bot. 67: 3457–3469.Google Scholar
  237. Pallardy, S. G. &J. L. Rhoads. 1993. Morphological adaptations to drought in seedlings of deciduous angiosperms. Canad. J. Forest Res. 23: 1766–1774.CrossRefGoogle Scholar
  238. Parcerisa, J., J. Boatella, R. Codony, A. Farran, J. Garcia, A. Lopez, M. Rafecas &A. Romero. 1993. Influence of variety and geographical origin on the lipid fraction of hazelnuts (Corylus avellana L.) from Spain, I. Fatty acid composition. Food Chem. 48: 411–414.CrossRefGoogle Scholar
  239. —,M. Rafecas, A. I. Castellote, R. Codony, A. Farran, J. Garcia, A. Lopez, A. Romero &J. Boatella. 1994. Influence of variety and geographical origin on the lipid fraction of hazelnuts (Coryllus avellana L.) from Spain, II. Triglyceride composition. Food Chem. 50: 245–249.CrossRefGoogle Scholar
  240. Parker, W. C. &S. G. Pallardy. 1985. Drought-induced leaf abscission and whole-plant drought tolerance of seedlings of seven black walnut families. Canad. J. Forest Res. 15: 818–821.CrossRefGoogle Scholar
  241. Payne, J. A., R. A. Jaynes &S. J. Kays. 1983. Chinese chestnut production in the United States: Practice, problems, and possible solutions. Econ. Bot. 37: 187–200.Google Scholar
  242. Peres, C. A. &C. Baider. 1997. Seed dispersal, spatial distribution and population structure of Brazilnut trees (Bertholletia excelsa) in southeastern Amazonia. J. Trop. Ecol. 13: 395–616.Google Scholar
  243. —,L. C. Schiesari &C. L. Dias-Leme. 1997. Vertebrate predation of Brazil-nuts (Bertholletia excelsa, Lecythidaceae), an agouti-dispersed Amazonian seed crop: A test of the escape hypothesis. J. Trop. Ecol. 13: 69–79.Google Scholar
  244. Perrins, C. M. 1966. The effect of beech crops on great tit populations and movements. Brit. Birds 59: 419–432.Google Scholar
  245. Pigott, C. D., A. C. Newton &S. Zammit. 1991. Predation of acorns and oak seedlings by grey squirrel. Quart. J. Forest. 85: 173–178.Google Scholar
  246. Pinney, K. &V. S. Polito. 1983. English walnut fruit growth and development. Sci. Hort. (Amsterdam) 21: 19–28.CrossRefGoogle Scholar
  247. Polies, S. G., B. W. Hanny &A. J. Harvey. 1981. Condensed tannins in kernels of thirty-one pecan [Carya illinoensis (Wangenh) K. Koch] cultivars. J. Agric. Food Chem. 29: 196–197.CrossRefGoogle Scholar
  248. Purchas, T. P. G. 1980. Feeding ecology of rooks (Corvus frugilegus) on the Heretaunga Plains, Hawke’s Bay, New Zealand. New Zealand J. Zool. 7: 557–578.Google Scholar
  249. Quintana-Ascencio, P. F., M. Gonzalez-Espinosa &N. Ramirez-Marcial. 1992. Acorn removal, seedling survivorship, and seedling growth ofQuercus crispipilis in successional forests of the highlands of Chiapas, Mexico. Bull. Torrey Bot. Club 119: 6–18.CrossRefGoogle Scholar
  250. Reich, P. B., R. O. Teskey, P. S. Johnson &T. M. Hinckley. 1980. Periodic root and shoot growth in oak. Forest Sci. 26: 590–598.Google Scholar
  251. Reid, V. H. &P. D. Goodrum. 1958. The effect of hardwood removal on wildlife. Proc. Soc. Amer. Foresters 57: 141–147.Google Scholar
  252. Richards, T. J. 1958. Concealment and recovery of food by birds, with some relevant observations on squirrels. Brit. Birds 51: 497–508.Google Scholar
  253. Robbins, C. T., T. A. Hanley, A. E. Hagerman, O. Hjeljord, D. L. Baker, C. C. Schwartz &W. W. Mautz. 1987. Role of tannins in defending plants against ruminants: Reduction in protein availability. Ecology 68: 98–107.CrossRefGoogle Scholar
  254. Ross, J. D. &J. W. Bradbeer. 1968. Concentrations of gibberellin in chilled hazel seeds. Nature 220: 85–86.PubMedCrossRefGoogle Scholar
  255. Rutter, P. A., G. Miller &J. A. Payne. 1991. Chestnuts (Castanea). Acta Hort. 290: 761–788.Google Scholar
  256. Salisbury, E. 1974. Seed size and mass in relation to environment. Proc. Roy. Soc. London 186: 83–88.Google Scholar
  257. Scarlett, T. L. &K. G. Smith. 1991. Acorn preference of urban blue jay (Cyanocitta cristata) during fall and spring in northwestern Arkansas. Condor 93: 438–442.CrossRefGoogle Scholar
  258. Schuster, L. 1950. Über den Sammeltrieb des Eichelhähers (Garrulus glandarius). Vogelwelt 71: 9–17.Google Scholar
  259. Seiwa, K. &K. Kikuzawa. 1991. Phenology of tree seedlings in relation to seed size. Canad. J. Bot. 69: 532–538.CrossRefGoogle Scholar
  260. Semel, B. &D. C. Andersen. 1988. Vulnerability of acorn weevils (Coleoptera: Curculionidae) and attractiveness of weevils and infestedQuercus alba acorns toPeromycus leucopus andBlarina brevicauda. Amer. Midl. Naturalist 119: 385–393.CrossRefGoogle Scholar
  261. Senter, S. D., J. A. Payne, G. Miller &S. L. Anagnostakis. 1994. Comparison of total lipids, fatty acids, sugars and nonvolatile organic acids in nuts from fourCastanea species. J. Sci. Food Agric. 65: 223–227.CrossRefGoogle Scholar
  262. Servello, F. A. &R. L. Kirkpatrick. 1989. Nutritional value of acorns for ruffed grouse. J. Wildlife Managern. 53: 26–29.CrossRefGoogle Scholar
  263. Shannon, P. R. M., R. A. Jeavons &B. C. Jarvis. 1983. Light-sensitivity of hazel seeds with respect to the breaking of dormancy. Pl. Cell Physiol. 24: 933–936.Google Scholar
  264. Sharp, W. M. &V. G. Sprague. 1967. Flowering and fruiting in the white oaks: Pistillate flowering, acorn development, weather, and yields. Ecology 48: 243–251.CrossRefGoogle Scholar
  265. Shaw, M. W. 1968a. Factors affecting the natural regeneration of sessile oak (Quercus petraea) in north Wales, I. A preliminary study of acorn production, viability and losses. J. Ecol. 56: 565–583.CrossRefGoogle Scholar
  266. — 1968b. Factors affecting the natural regeneration of sessile oak (Quercus petraea) in north Wales, II. Acorn losses and germination under field conditions. J. Ecol. 56: 647–660.CrossRefGoogle Scholar
  267. — 1974. The reproductive characteristics of oak. Pp. 162–181in M. G. Morris & F. H. Perring (eds.), The British oak: Its history and natural history. E. W. Classey, Farington, England.Google Scholar
  268. Shirley, H. L. 1929. Light requirements and silvicultural practice. J. Forest. 27: 535–537.Google Scholar
  269. Short, H. L. 1976. Composition and squirrel use of acorns of black and white oak groups. J. Wildlife Managern. 40: 479–483.CrossRefGoogle Scholar
  270. Shuhart, D. V. 1932. Morphology and anatomy of the fruit of hicoria pecan. Bot. Gaz. (Crawfordsville) 93: 1–20.CrossRefGoogle Scholar
  271. Sibley, C. G. &J. E. Ahlquist 1990. Phylogeny and classification of birds. Yale University Press, New Haven, CT.Google Scholar
  272. Silvertown, J. W. 1980. The evolutionary ecology of mast seeding in trees. Biol. J. Linn. Soc. 14: 235–250.CrossRefGoogle Scholar
  273. Smallwood, P. D. &W. D. Peters. 1986. Grey squirrel food preferences: The effects of tannin and fat concentration. Ecology 67: 168–174.CrossRefGoogle Scholar
  274. Smith, C. C. &D. Follmer. 1972. Food preferences of squirrels. Ecology 53: 82–91.CrossRefGoogle Scholar
  275. —,J. L. Hamrick &C. L. Kramer. 1990. The advantage of mast years for wind pollination. Amer. Naturalist 136: 154–166.CrossRefGoogle Scholar
  276. Smith, J. F. &J. J. Doyle. 1995. A cladistic analysis of chloroplast DNA restriction site variation and morphology for the genera of the Juglandaceae. Amer. J. Bot. 82: 1163–1172.CrossRefGoogle Scholar
  277. Smith, K. G. &T. Scarlett. 1987. Mast production and winter populations of red-headed woodpeckers and blue jays. J. Wildlife Managern. 51: 459–467.CrossRefGoogle Scholar
  278. Sone, K. &A. Kohno. 1996. Application of radiotelemetry to the survey of acorn dispersal byApodemus mice. Ecol. Research 11: 187–192.CrossRefGoogle Scholar
  279. — 1999. Acorn hoarding by the field mouse,Apodemus speciosus Temminck (Rodentia: Muridae). J. Forest Res. 4: 167–175.CrossRefGoogle Scholar
  280. Sonesson, L. K. 1994. Growth and survival after cotyledon removal inQuercus robur seedlings: Growth in different natural soil types. Oikos 69: 65–70.CrossRefGoogle Scholar
  281. Sork, V. L. 1983a. Distribution of pignut hickory (Carya glabra) along a forest to edge transect, and factors affecting seedling recruitment. Bull. Torrey Bot. Club 110: 494–506.CrossRefGoogle Scholar
  282. — 1983b. Mammalian seed dispersal of pignut hickory during three fruiting seasons. Ecology 64: 1049–1056.CrossRefGoogle Scholar
  283. — 1983c. Mast-fruiting in hickories and availability of nuts. Amer. Midl. Naturalist 109: 81–88.CrossRefGoogle Scholar
  284. — 1984. Examination of seed dispersal and survival in red oak,Quercus rubra (Fagaceae), using metal-tagged acorns. Ecology 65: 1020–1022.CrossRefGoogle Scholar
  285. — 1993. Evolutionary ecology of mast-seeding in temperate and tropical oaks (Quercus spp.). Vegetatio 107/108: 133–147.Google Scholar
  286. — &D. H. Boucher. 1977. Dispersal of sweet pignut hickory in a year of low fruit production, and the influence of predation by a curculionid beetle. Oecologia 28: 289–299.Google Scholar
  287. —,P. Stacey &J. E. Averett. 1983. Utilization of red oak acorns in non-bumper crop year. Oecologia 59: 49–53.CrossRefGoogle Scholar
  288. —,J. Bramble &O. Sexton. 1993. Ecology of mast-fruiting in three species of North American deciduous oaks. Ecology 74: 528–541.CrossRefGoogle Scholar
  289. Sparks, D. &J. L. Heath. 1972. Pistillate flower and fruit drop of pecan as a function of time and shoot length. HortScience 7: 402–404.Google Scholar
  290. — &G. D. Madden. 1985. Pistillate flower and fruit abortion in pecan as a function of cultivar, time, and pollination. J. Amer. Soc. Hort. Sci. 110: 219–223.Google Scholar
  291. — &I. E. Yates. 1995. Anatomy of shuck abscission in “desirable” pecan. J. Amer. Soc. Hort. Sci. 120: 790–797.Google Scholar
  292. Stapanian, M. A. &C. C. Smith. 1978. A model for seed scatterhoarding: Coevolution of fox squirrels and black walnuts. Ecology 59: 884–896.CrossRefGoogle Scholar
  293. ——. 1984. Density-dependent survival of scatterhoarded nuts: An experimental approach. Ecology 65: 1387–1396.CrossRefGoogle Scholar
  294. ——. 1986. How fox squirrels influence the invasion of prairies by nut-bearing trees. J. Mammalogy 67: 326–332.CrossRefGoogle Scholar
  295. Steele, M. A., T. Knowles, K. Bridle &E. L. Simms. 1993. Tannins and partial consumption of acorns: Implications for dispersal of oaks by seed predators. Amer. Midl. Naturalist 130: 229–238.CrossRefGoogle Scholar
  296. —,L. Z. Hadj-Chikh &J. Hazeltine. 1996. Caching and feeding decisions bySciurus carolinensis: Response to weevil-infested acorns. J. Mammillaria Soc. 77: 305–314.Google Scholar
  297. Stephenson, A. G. 1981. Flower and fruit abortion: Proximate causes and ultimate functions. Ann. Rev. Ecol. Syst. 12: 253–279.CrossRefGoogle Scholar
  298. Stiles, E. W. &E. T. Dobi. 1987. Scatterhoarding of horsechestnuts by eastern gray squirrels. Bull. New Jersey Acad. Sci. 32: 1–3.Google Scholar
  299. Stone, D. E. 1973. Patterns in the evolution of amentiferous fruits. Brittonia 25: 371–384.CrossRefGoogle Scholar
  300. — 1989. Biology and evolution of temperate and tropical Juglandaceae. Clarendon Press, Oxford.Google Scholar
  301. —,G. A. Adrouny &R. H. Flake. 1969. New World Juglandaceae, II. Hickory nut oils, phenetic similarities, and evolutionary implications in the genusCarya. Amer. J. Bot. 56: 928–935.CrossRefGoogle Scholar
  302. Sviridenko, P. A. 1971. Role ofSciurus vulgaris L. in distribution of walnut. Vestn. Zool. 5: 87–88.Google Scholar
  303. Swanberg, P. O. 1951. Food storage, territory and song in the thick-billed nutcracker. Proc. Xth Int. Ornithol. Congr. 10: 545–554.Google Scholar
  304. — 1981. Clutch size in the thick-billed nutcrackerNucifraga c. caryocatactes in Scandinavia in relation to the supply of hazel nuts in the individual winter stores. Vår Fågelvärld 40: 399–408.Google Scholar
  305. Tamura, N. &E. Shibasaki. 1996. Fate of walnut seeds,Juglans ailanthifolia, hoarded by Japanese squirrels,Sciurus lis. J. Forest Res. 1: 219–222.CrossRefGoogle Scholar
  306. —,Y. Hashimoto &F. Hayashi. 1999. Optimal distances for squirrels to transport and hoard walnuts. Animal Behavior 58: 635–642.CrossRefGoogle Scholar
  307. Tanton, M. T. 1965. Acorn destruction potential of small mammals and birds in British woodlands. Quart. J. Forest. 59: 230–234.Google Scholar
  308. Tecklin, J. &D. D. McCreary. 1991. Acorn size as a factor in early seedling growth of blue oaks. Pp. 48–53in Proceedings of the Symposium on Oak Woodlands and Hardwood Rangeland Management, October 31–November 2, 1990, Davis, California. General Technical Report PSW 126. U.S. Dept. of Agriculture, Pacific Southwest Research Station, Berkeley, CA.Google Scholar
  309. Teclaw, R. M. &J. G. Isebrands. 1986. Collection procedures affect germination of northern red oak (Quercus rubra L.) acorns. Tree Planters’ Notes 37: 8–12.Google Scholar
  310. Thompson, D. C. &P. S. Thompson. 1980. Food habits and caching behavior of urban grey squirrels. Canad. J. Zool. 58: 701–710.CrossRefGoogle Scholar
  311. Thompson, K. 1987. Seeds and seed banks. New Phytol. 106: 23–34.Google Scholar
  312. Thompson, M. M. 1979. Growth and development of the pistillate flower and nut in “Barcelona” filbert. J. Amer. Soc. Hort. Sci. 104: 427–432.Google Scholar
  313. Thompson, T. E. &J. F. Baker. 1993. Heritability and phenotypic correlations of six pecan nut characteristics. J. Amer. Soc. Hort. Sci. 118: 415–418.Google Scholar
  314. — &L. J. Grauke. 1991. Pecans and other hickories (Carya). Acta Hort. 290: 839–904.Google Scholar
  315. —,E. F. Young Jr.,W. O. McIlrath, H. D. Petersen &G. S. Sibbett. 1989. Pecan nut kernel characteristics show genotype-environment interactions. J. Amer. Soc. Hort. Sci. 114: 706–711.Google Scholar
  316. Thor, C. J. B. &C. L. Smith. 1935. A physiological study of seasonal changes in the composition of the pecan during fruit development. J. Agric. Res. 50: 97–101.Google Scholar
  317. Tiffney, B. H. 1986. Fruit and seed dispersal and the evolution of the Hamamelidae. Ann. Missouri Bot. Gard. 73: 394–416.CrossRefGoogle Scholar
  318. Tomback, D. F. 1982. Dispersal of whitebark pine seeds by Clark’s nutcracker: A mutualism hypothesis. J. Animal Ecol. 51: 451–467.CrossRefGoogle Scholar
  319. — &Y. B. Linhart. 1990. The evolution of bird-dispersed pines. Evol. Ecol. 4: 185–219.CrossRefGoogle Scholar
  320. Tripathi, R. S. &M. L. Khan. 1990. Effects of seed weight and microsite characteristics on germination and seedling fitness in two species ofQuercus in a subtropical wet hill forest. Oikos 57: 289–296.CrossRefGoogle Scholar
  321. Turcek, F. J. &L. Kelso. 1968. Ecological aspects of food transportation and storage in the Corvidae. Comm. Behav. Biol., Part A 1: 277–297.Google Scholar
  322. Van den Hammen, T., T. A. Wijmstra &W. H. Zagwijn. 1971. The floral record of the late Cenozoic of Europe. Pp. 391–424in K. K. Turekian (ed.), The late Cenozoic glacial ages. Yale University Press, New Haven, CT.Google Scholar
  323. Van Valen, L. &R. E. Sloan. 1966. The extinction of the multituberculates. Syst. Zool. 15: 261–278.CrossRefGoogle Scholar
  324. Vander Wall, S. B. 1982. An experimental analysis of cache recovery in Clark’s nutcracker. Animal Behavior 30: 84–94.CrossRefGoogle Scholar
  325. — 1988. Foraging of Clark’s nutcrackers on rapidly changing pine seed resources. Condor 90: 621–631.CrossRefGoogle Scholar
  326. — 1990. Food hoarding in animals. University of Chicago Press, Chicago.Google Scholar
  327. — 1991. Mechanisms of cache recovery by yellow pine chipmunks. Animal Behavior 41: 851–863.CrossRefGoogle Scholar
  328. — 1992. The role of animals in dispersing a “wind-dispersed” pine. Ecology 73: 614–621.CrossRefGoogle Scholar
  329. — 1993. Seed water content and the vulnerability of buried seed to foraging rodents. Amer. Midl. Naturalist 129: 272–281.CrossRefGoogle Scholar
  330. — 1998. Foraging success of granivorous rodents: Effects of variation in seed and soil water on olfaction. Ecology 79: 233–241.CrossRefGoogle Scholar
  331. — 2000. The influence of environmental conditions on cache recovery and cache pilferage by yellow pine chipmunks (Tamias amoenus) and deer mice (Peromyscus maniculatus). Behaviour Ecol. 11: 544–549.CrossRefGoogle Scholar
  332. — &R. P. Balda. 1977. Coadaptations of the Clark’s nutcracker and the piñon pine for efficient seed harvest and dispersal. Ecol. Monogr. 47: 89–111.CrossRefGoogle Scholar
  333. —— 1981. Ecology and evolution of food-storage behavior of conifer-seed-caching corvids. Z. Tierpsychol. 56: 217–242.Google Scholar
  334. — &J. W. Joyner. 1998. Recaching of Jeffrey pine (Pinus jeffreyi) seeds by yellow pine chipmunks (Tamias amoenus): Potential effects on plant reproductive success. Canad. J. Zool. 76: 154–162.CrossRefGoogle Scholar
  335. Wainio, W. W. &E. B. Forbes. 1941. The chemical composition of forest fruits and nuts from Pennsylvania. J. Agric. Res. 62: 627–635.Google Scholar
  336. Waller, D. M. 1979. Models of mast fruiting in trees. J. Theor. Biol. 80: 223–232.PubMedCrossRefGoogle Scholar
  337. Wästljung, U. 1989. Effects of crop size and stand size on seed removal by vertebrates in hazelCorylus avellana. Oikos 54: 178–184.CrossRefGoogle Scholar
  338. Watkins, R. 1995. Cherry, plum, peach, apricot and almond:Prunus spp. Pp. 242–247in N. W. Simmonds (ed.), Evolution of crop plants. Longman, London.Google Scholar
  339. Watt, A. S. 1919. On the causes of failure of natural regeneration in British oakwoods. J. Ecol. 7: 173–203.CrossRefGoogle Scholar
  340. — 1923. On the ecology of British beechwoods with special reference to their regeneration. J. Ecol. 7: 1–48.Google Scholar
  341. Watts, C. H. S. 1969. The regulation of wood mouse (Apodemus sylvaticus) numbers in Wytham woods, Berkshire. J. Animal Ecol. 38: 285–304.CrossRefGoogle Scholar
  342. Wauters, L. A. &P. Casale. 1996. Long-term scatterhoarding by Eurasian red squirrels (Sciurus vulgaris). J. Zool. (London) 238: 195–207.Google Scholar
  343. —,C. Swinnen &A. A. Dhondt. 1992. Activity budget and foraging behaviour of red squirrels (Sciurus vulgaris) in coniferous and deciduous habitats. J. Zool. (London) 227: 71–86.Google Scholar
  344. Webb, S. L. 1986. Potential role of passenger pigeons and other vertebrates in rapid Holocene migrations of nut trees. Quaternary Res. 26: 367–375.CrossRefGoogle Scholar
  345. — 1987. Beech range extension and vegetation history: Pollen stratigraphy of two Wisconsin lakes. Ecology 68: 1993–2005.CrossRefGoogle Scholar
  346. Webb, T. 1981. The past 11,000 years of vegetation change in eastern North America. BioScience 31: 501–506.CrossRefGoogle Scholar
  347. — 1988. Eastern North America. Pp. 31–59in B. Huntley & T. Webb III (eds.), Vegetation history. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
  348. Weckerly, F. W., K. E. Nicholson &R. D. Semlitsch. 1989a. Experimental test of discrimination by squirrels for insect-infested and noninfested acorns. Amer. Midl. Naturalist 122: 412–415.CrossRefGoogle Scholar
  349. —,D. W. Sugg &R. D. Semlitsch. 1989b. Germination success of acorns (Quercus): Insect predation and tannins. Canad. J. Forest Res. 19: 811–815.CrossRefGoogle Scholar
  350. Wentworth, J. M., A. S. Johnson, P. E. Hale &K. E. Kammermeyer. 1992. Relationships of acorn abundance and deer herd characteristics in the southern Appalachians. Southern J. Appl. Forest. 16: 5–8.Google Scholar
  351. Williamson, M. J. 1966. Premature abscissions and white oak acorn crops. Forest Sci. 12: 19–21.Google Scholar
  352. Wing, S. L. &L. J. Hickey. 1984. ThePlatycarya perplex and the evolution of the Juglandaceae. Amer. J. Bot. 71: 388–411.CrossRefGoogle Scholar
  353. Wolff, J. O. 1996. Population fluctuations of mast-eating rodents are correlated with production of acorns. J. Mammillaria Soc. 77: 850–856.Google Scholar
  354. Wolgast, L. J. &B. B. Stout. 1977. The effects of relative humidity at the time of flowering on fruit set in bear oak (Quercus ilicifolia). Amer. J. Bot. 64: 159–160.CrossRefGoogle Scholar
  355. Wood, B. W. 1993. Production characteristics of the United States pecan industry. J. Amer. Soc. Hort. Sci. 118: 538–545.Google Scholar
  356. Wood, O. M. 1938. Seedling reproduction of oak in southern New Jersey. Ecology 19: 276–293.CrossRefGoogle Scholar
  357. Woodroof, J. G. &N. C. Woodroof. 1927. The development of the pecan nut (Hicoria pecan) from flower to maturity. J. Agric. Res. 34: 1049–1063.Google Scholar
  358. Woods, K. D. &M. B. Davis. 1989. Paleoecology of range limits: Beech in the upper peninsula of Michigan. Ecology 70: 681–696.CrossRefGoogle Scholar
  359. Yasuda, M., S. Miura &N. A. Hussein. 2000. Evidence for food hoarding behaviour in terrestrial rodents in Pasoh Forest Reserve, a Malaysian lowland rain forest. J. Trop. Forest Sci. 12: 164–173.Google Scholar
  360. Zucker, W. V. 1983. Tannins: Does structure determine function? An ecological perspective. Amer. Naturalist 121: 335–365.CrossRefGoogle Scholar
  361. Zusi, R. L. 1987. A feeding adaptation of the jaw articulation in New World jays (Corvidae). Auk 104: 665–680.Google Scholar

Copyright information

© The New York Botanical Garden 2001

Authors and Affiliations

  • Stephen B. Vander Wall
    • 1
  1. 1.Department of Biology Ecology, Evolution, and Conservation Biology ProgramUniversity of NevadaRenoUSA

Personalised recommendations