Advertisement

The Botanical Review

, Volume 66, Issue 1, pp 119–149 | Cite as

Constraints and trade-offs in Mediterranean plant communities: The case of holm oak-Aleppo pine forests

  • M. A. Zavala
  • J. M. Espelta
  • Javier Retana
Article

Abstract

In this paper we review those aspects that are relevant to the development of a mechanistic ecological theory to account for the structure and dynamics of Mediterranean forests, focusing our attention on mixed forests of holm oak (Quercus ilex L.), a shade-tolerant, slowgrowing species that resprouts vigorously after disturbance, and Aleppo pine (Pinus halepensis M.), a fast-growing, nonresprouting, shade-intolerant species. The main objectives of this report are: to introduce some of the primary features of these forests, showing their structural complexity and historical peculiarities; to show that much of this complexity can be conceptually reduced to two main factors of variation, soil-moisture gradients and a complex interaction of historical management and disturbance regimes; and to contrast the unique features of Mediterranean systems with other communities that have inspired generalization in ecology.

Plants in Mediterranean-climate regions must face several environmental constraints during their life cycle: water limitation, competition for light, and a complex set of disturbance regimes, mainly fire, herbivory, and human exploitation. The response of co-occurring species to a given set of environmental constraints depends on a combination of physiological and morphological traits. In holm oak-Aleppo pine forests, the lower limit of distribution along a soil-moisture gradient appears to be controlled by dry-season water stress on seedling performance, and the upper limit seems to be controlled by shade tolerance relative to competitors. The processes that generate and maintain these patterns are related to the responses of the two species to the water and light environments that result from interacting gradients of disturbance and resource availability.

The dynamics of mixed holm oak-Aleppo pine forests may be represented along two major environmental axes: water availability and light intensity; namely, time since last disturbance. At the regional scale, the presence of holm oak and Aleppo pine is expected to be driven mainly by the precipitation regime, with the proportion of Aleppo pine increasing toward the driest border and with holm oak being the dominant species in areas with higher precipitation. Changes of dominance of holm oak and Aleppo pine also respond to water availability at the local scale. In this case, variations between species depend on different factors in a complex way, because reduced soil-moisture levels may result either from low precipitation or from topography and edaphic features. The dynamics of holm oak-Aleppo pine forests are also determined by temporal changes in canopy closure; that is, forest recovery after disturbance. In this case, the proportion of Aleppo pine would increase in recently disturbed stands (i.e., with high light intensity reaching the forest floor), whereas regeneration of holm oak would be dominant under partially closed canopies.

Theories of forest dynamics developed in humid regions may apply only poorly to Mediterranean plant communities, where vegetation change is qualitatively or quantitatively different. Thus, succession in temperate forests appears to be driven by differences in light availability and shade tolerance; but in Mediterranean plant communities, water limitation is of greater importance for the distribution of forest species. In Mediterranean landscapes the interaction of life-history strategies with changing environments is difficult to infer from observational and experimental studies. A mechanistic approach, in which competition or plant performance is measured as a function of resource availability, seems more feasible. The idea should be to develop multispecies models calibrated specifically for Mediterranean forests in a combined program of modeling, field research, and experimentation.

Keywords

Botanical Review Disturbance Regime Shade Tolerance Pinus Halepensis Quercus Ilex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Resumen

En este trabajo se revisan los aspectos más relevantes en el desarrollo de una teoría ecológica mecanicista sobre la estructura y dinámica de los bosques mediterráneos, en concreto sobre los bosques mixtos de encina (Quercus ilex L.), una especie tolerante a la sombra, de crecimiento lento, y que rebrota vigorosamente después de una perturbación, y pino carrasco (Pinus halepensis M.), una especie de crecimiento rápido, no rebrotadora, e intolerante a la sombra. Los principales objetivos de este estudio son: introducir algunas de las principales características de estos bosques, mostrando su complejidad estructural y sus peculiaridades históricas; mostrar que gran parte de esta complejidad puede reducirse conceptualmente a dos principales factores de variación, la disponibilidad de agua en el suelo y una compleja interaction de regímenes de gestión y perturbación; y contrastar las características únicas de los sistemas mediterráneos con las de otros sistemas en los que se han basados gran parte de las generalizaciones que se han hecho en ecologia.

En las regiones de clima mediterráneo, las plantas deben enfrentarse a diferentes restricciones: limitación hídrica, competencia por la luz, y un conjunto complejo de regímenes de perturbación, principalmente fuego, herbivoría, y explotación humana. La respuesta de las especies a un conjunto de limitaciones ambientales depende de la combinación de caracteres fisiológicos y morfológicos. En los bosques de pino carrasco y encina, el límite inferior de distribución de las especies viene controlado por el estrés hídrico de la estación, mientras que el límite superior viene controlado por la tolerancia a la sombra. Los procesos que generan y mantienen estos patrones están relacionados con las respuestas de ambas especies a lo largo de su ciclo de vida a los ambientes de luz y agua que se generan como resultado de la interacción de los gradientes de perturbación y disponibilidad de recursos.

La dinámica de los bosques mixtos de pino carrasco y encina se puede representar a lo largo de dos principales ejes ambientales: disponibilidad de agua e intensidad de luz; o, lo que es lo mismo, tiempo desde la última perturbación. A una escala regional, la presencia de pino carrasco y encina viene determinada por el régimen de precipitación: el pino carrasco aumenta hacia el extremo más seco, mientras que la encina se hace dominante en áreas con mayor precipitación. A escala local, los cambios en la dominancia de ambas especies también responden a la disponibilidad de agua. En este caso las variaciones entre especies dependen de diferentes factores, ya que los niveles bajos de humedad del suelo pueden ser debidos a la baja precipitación, pero también a la topografía o a las características edáficas. La dinámica de los bosques de pino y encina también depende de los cambios temporales en el cierre de la cubierta, es decir, de la recuperación del bosque después de la perturbación. En este caso, la proporción de pino carrasco se incrementa en los rodales recién perturbados (en los cuales llega mucha luz al suelo del bosque), mientras que la regeneración de encina domina bajo cubiertas parcialmente cerradas.

Las teorías de dinámica forestal desarrolladas en las regiones húmedas se aplican con dificultad en las comunidades de plantas mediterráneas, donde los cambios de la vegetación suelen ser cualitativamente y cuantitativamente distintos. Así, en los bosques templados la sucesión viene determinada por diferencias en la disponibilidad de luz y la tolerancia a la sombra de las diferentes especies, mientras que en las comunidades mediterráneas la limitación hídrica es más importante a la hora de explicar la distribución de las especies forestales. En los ecosistemas mediterráneos, la interacción de las estrategias del ciclo vital con los cambios en el ambiente dificilmente pueden deducirse a partir de estudios observacionales y experimentales. Se requiere una aproximación mecanicista, en la cual la competencia o el éxito de las plantas se pueda medir en función de la disponibilidad de recursos. La idea sería desarrollar modelos multiespecíficos calibrados específicamente para los bosques mediterráneos, en los que se combinara la modelización con los estudios de campo y la experimentación.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abrams, M. D. 1992. Fire and the development of oak forests. Bioscience 42: 346–353.CrossRefGoogle Scholar
  2. — &J. A. Downs. 1990. Successional replacement of old-growth white oak by mixed mesophytic hardwoods in southwestern Pennsylvania. Canad. J. Forest Res. 20: 1864–1870.CrossRefGoogle Scholar
  3. — &G. J. Nowacki. 1992. Historical variation in fire, oak recruitment and post-logging accelerated succession in central Pennsylvania. Bull. Torrey Bot. Club 119: 19–28.CrossRefGoogle Scholar
  4. Abril, M. &M. V. Diego. 1994. Resultados preliminares de un experimento de riego y fertilización con plántulas de encina: Efectos sobre el crecimiento y estructura de la planta, relaciones hídricas y fotosíntesis. Studia Oecol. 10–11:329–338.Google Scholar
  5. Acherar, M., J. Lepart &M. Debussche. 1984. La Colonisation des friches par le pin d’Alep (Pinus halepensis Miller) en Languedoc méditerranéen. Acta Oecol., Oecol. Plant. 5:179–189.Google Scholar
  6. Aerts, R. 1995. The advantages of being evergreen. Tree 10:402–407.Google Scholar
  7. Antrop, M. 1993. The transformation of the Mediterranean landscape: An experience of 25 years of observation. Landscape and Urban Plann. 24:3–13.CrossRefGoogle Scholar
  8. Arianoutsou, M. &R. H. Groves, eds. 1994. Plant-animal interactions in Mediterranean-type ecosystems. Kluwer Academic Publishers, Dordrecht.Google Scholar
  9. Arroyo, M. T. K., L. Cavieres, C. Marticorena &M. Muñoz-Schick. 1995. Convergence in the Mediterranean floras in central Chile and California: Insights from comparative biogeography. Pp. 43–88in M. T. K. Arroyo, P. H. Zedler & M. D. Fox (eds.), Ecology and biogeography of Mediterranean ecosystems in Chile, California and Australia. Springer-Verlag, Berlin.Google Scholar
  10. —. 1995. Ecology and biogeography of Mediterranean ecosystems in Chile, California and Australia. Springer-Verlag, Berlin.Google Scholar
  11. Augspurger, C. K. 1984. Light requirements of neotropical tree seedlings: A comparative study of growth and survival. J. Ecol. 72:777–795.CrossRefGoogle Scholar
  12. Axelrod, D. I. 1975. Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Ann. Missouri Bot. Gard. 62:280–334.CrossRefGoogle Scholar
  13. Bacilieri, R., M. A. Bouchet, D. Bran, M. Grandjanny, M. Maistre, P. Perret &F. Romane. 1994. Natural germination as a resilience component in Mediterranean coppice stands ofCastanea sativa Mill. andQuercus ilex L.. Acta Oecol. 15:417–429.Google Scholar
  14. Barbero, M. 1988. Caractérisation de quelques structures et architectures forestières des arbres et arbustes à feuilles persistantes de l’étage méditerranéen. Rev. Forest. Franc. 40:371–380.Google Scholar
  15. —,R. Loisel &P. Quézel. 1992. Biogeography, ecology and history of MediterraneanQuercus ilex ecosystems. Vegetatio 99–100:19–34.CrossRefGoogle Scholar
  16. Barton, A. M. 1993. Factors controlling plant distributions: Drought, competition, and fire in montane pines. Ecol. Monogr. 63:367–397.CrossRefGoogle Scholar
  17. — &J. A. Teeri. 1993. The ecology of elevational positions in plants: Drought resistance in five montane pine species in southeastern Arizona. Amer. J. Bot. 80:15–25.CrossRefGoogle Scholar
  18. Bazzaz, F. A. &P. M. Wayne. 1994. Coping with environmental heterogeneity: The physiological ecology of tree seedling regeneration across the gap-understory continuum. Pp. 349–390in M. M. Caldwell & R. W. Pearcy (eds.), Exploitation of environmental heterogeneity by plants: Ecophysiological processes above- and belowground. Academic Press, New York.Google Scholar
  19. Beard, J. S. 1977. Tertiary evolution of the Australian flora in the light of latitudinal movements of the continent. J. Biogeogr. 4:111–118.CrossRefGoogle Scholar
  20. Biswell, H. H. 1972. Fire ecology in ponderosa pine grasslands. Proc. Tall Timbers Fire Ecol. Conf. 12:69–97.Google Scholar
  21. Blondel, J. &J. Aronson. 1995. Biodiversity and ecosystem function in the Mediterranean basin: Human and non-human determinants. Pp. 43–119in G. W. Davis & D. M. Richardson (eds.), Mediterranean-type ecosystems: The function of biodiversity. Springer-Verlag, Berlin.Google Scholar
  22. — &J. D. Vigne. 1993. Space, time, and man as determinants of diversity of birds and mammals in the Mediterranean region. Pp. 135–146in R. E. Ricklefs & D. Schluter (eds.), Species diversity in ecological communities. University of Chicago Press, Chicago.Google Scholar
  23. Bond, W. J. &B. W. van Wilgen. 1996. Fire and Plants. Chapman &Hall, London.Google Scholar
  24. Bongers, F. &J. Popma. 1990. Leaf dynamics of seedlings of rain forest species in relation to canopy gaps. Oecologia 82:122–127.CrossRefGoogle Scholar
  25. Bradbury, D. E. 1981. The physical geography of the Mediterranean lands. Pp. 53–62in F. di Castri, D. W. Goodall & R. L. Specht (eds.), Mediterranean-type shrublands. Elsevier Scientific Publishing Co., Amsterdam.Google Scholar
  26. Bradford, K. J. &T. C. Hsiao. 1982. Physiological responses to moderate water stress. Pp. 263–324in O. L. Lange, P. S. Nobel, C. B. Osmond & H. Ziegler (eds.), Physiological plant ecology. II. Water relations and carbon assimilation. Encyclopedia of Plant Physiology. n. s. vol. 12B. Springer-Verlag, Berlin.Google Scholar
  27. Bran, D., O. Lobreaux, M. Maistre, P. Perret &F. Romane. 1990. Germination ofQuercus ilex andQ. pubescens in aQ. ilex coppice: Long-term consequences. Vegetatio 87: 45–50.CrossRefGoogle Scholar
  28. Braun-Blanquet, J. 1928. Pflanzensoziologie, grundzüge der Vegetationskunde. Springer, Berlin.Google Scholar
  29. —. 1936. La Forêt d’Yeuse languedocienne. Comm SIGMA 5, Mem. Soc. Sci. Nat. Nimes, France.Google Scholar
  30. Broncano, M. J., M. Riba &J. Retana. 1998. Seed germination and seedling performance of two Mediterranean tree species, holm oak (Quercus ilex) and Aleppo pine (Pinus halepensis): A multifactor experimental approach. Pl. Ecol. 1: 17–26.CrossRefGoogle Scholar
  31. Cain, M. L., S. W. Pacala, J. A. Silander Jr. &M.-J. Fortin. 1995. Neighborhood models of clonal growth in the white clover,Trifolium repens. Amer. Nat. 145: 888–917.CrossRefGoogle Scholar
  32. Callaway, R. M. 1990. Effect of soil water distribution on the lateral root development of three species of Californian oaks. Amer. J. Bot. 77: 1469–1474.CrossRefGoogle Scholar
  33. —. 1992. Effects of shrubs on recruitment ofQuercus douglasii andQuercus lobata in California. Ecology 73: 2118–2228.CrossRefGoogle Scholar
  34. — &C. M. D’Antonio. 1991. Shrub facilitation of coast live oak establishment in central California. Madroño 38: 158–169.Google Scholar
  35. Canadell, J. &F. Roda. 1991. Root biomass ofQuercus ilex in a montane Mediterranean forest. Canad. J. Forest Res. 21: 1771–1778.CrossRefGoogle Scholar
  36. — &P. H. Zedler. 1995. Underground structures of woody plants in Mediterranean ecosystems of Australia, California and Chile. Pp. 177–210 in M. T. K. Arroyo, P. H. Zedler & M. D. Fox (eds.), Ecology and biogeography of Mediterranean ecosystems in Chile, California and Australia. Springer-Verlag, Berlin.Google Scholar
  37. Canham, C. D. 1989. Growth and canopy architecture of shade tolerant trees: Response to canopy gaps. Ecology 69: 786–795.CrossRefGoogle Scholar
  38. Cartan-Son, M., M. J. Floret, M. J. Galan, M. Grandjany, E. Le Floc’h, M. Maistre, P. Peret &F. Romane. 1992. Factors affecting radial growth ofQuercus ilex L. in a coppice stand in southern France. Vegetatio 99–100: 61–68.CrossRefGoogle Scholar
  39. Castell, C. &J. Terradas. 1994. Effects of water and nutrient availability on water relations, gas exchange and growth rate of mature plants and resproutsof Arbutus unedo L.. Ann. Bot. 73: 595–602.CrossRefGoogle Scholar
  40. —— &J. D. Tenhunen. 1994. Water relations, gas exchange, and growth of resprouts and mature plant shoots ofArbutus unedo L. andQuercus ilex L.. Oecologia 98: 201–211.CrossRefGoogle Scholar
  41. Chabot, B. F. &D. J. Hicks. 1982. The ecology of leaf life spans. Ann. Rev. Ecol. Syst. 13:229–259.CrossRefGoogle Scholar
  42. Chaparro, J. 1996. Distribución potencial del bosque y de sus especies arbóreas en zonas mediterráneas semiáridas: Modelos y aplicaciones. Ph.D. diss., University of Murcia.Google Scholar
  43. Chapin, F. S., III. 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260.CrossRefGoogle Scholar
  44. —,E. D. Schulze &H. A. Mooney. 1990. The ecology and economics of storage in plants. Ann. Rev. Ecol. Syst. 21:423–447.CrossRefGoogle Scholar
  45. Clark, J. S. 1991. Disturbance and tree life history on the shifting mosaic landscape. Ecology 72: 1102–1118.CrossRefGoogle Scholar
  46. — &J. Robinson. 1993. Paleoecology of fire. Pp. 193–214in P. J. Crutzen & J. G. Goldammer (eds.), Fire in the environment: The ecological, atmospheric, and climatic importance of vegetation fires. John Wiley &Sons, London.Google Scholar
  47. Cody, M. L. &H. A. Mooney. 1978. Convergence versus nonconvergence in Mediterranean-climate ecosystems. Ann. Rev. Ecol. Syst. 9: 265–231.CrossRefGoogle Scholar
  48. Costa, M., M. García, C. Morla &H. Sainz. 1990. La evolución de los bosques de la Península Ibérica: Una interpretación basada en datos paleobiogeográficos. Ecología Fuera de Serie 1: 31–58.Google Scholar
  49. Cowling, R. M. &B. M. Campbell. 1980. Convergence in vegetation structure in the Mediterranean communities of California, Chile and South Africa. Vegetatio 43: 191–197.CrossRefGoogle Scholar
  50. Crawley, M. J. 1986. Plant ecology. Blackwell Scientific Press, Oxford.Google Scholar
  51. Crow, T. R. 1992. Population dynamics and growth patterns for a cohort of northern red oak (Quercus rubra) seedlings. Oecologia 91: 192–200.CrossRefGoogle Scholar
  52. Davis, F. W. &J. Michaelsen. 1995. Sensitivity of fire regime in chaparral ecosystems to climate change. Pp. 435–456in J. M. Moreno & W. C. Oechel (eds.), Global change in Mediterranean-type ecosystems. Springer-Verlag, Berlin.Google Scholar
  53. Davis, G. W. &D. M. Richardson, eds. 1995. Mediterranean-type ecosystems: The function of biodiversity. Springer-Verlag, Berlin.Google Scholar
  54. Davis, M. B. 1981. Quaternary history and the stability of forest communities. Pp. 132–153in D. C. West, H. H. Shugart & D. B. Botkin (eds.), Forest succession: Concepts and application. Springer-Verlag, New York.Google Scholar
  55. Dell, B., A. J. M. Hopkins &B. B. Lamont, eds. 1986. Resilience in Mediterranean-type ecosystems. W. Junk Publishers, Dordrecht.Google Scholar
  56. Di Castri, F., D. W. Goodall &R. L. Specht, eds. 1981. Mediterranean-type shrublands. Elsevier Scientific Publishing Co., Amsterdam.Google Scholar
  57. Ducrey, M. 1992. Quelle sylviculture et quel avenir pour les tallis de chêne vert (Quercus ilex L.) de la région Méditerranéenne française. Rev. Forest. Franc. 154: 12–34.CrossRefGoogle Scholar
  58. — &J. Toth. 1992. Effect of cleaning and thinning on height growth and girth increment in holm oak coppices (Quercus ilex). Vegetatio 99-100: 365–375.CrossRefGoogle Scholar
  59. Ellsworth, D. S. &P. B. Reich. 1992. Leaf mass per area, nitrogen content and photosynthetic carbon gain inAcer saccharum seedlings in contrasting forest light environments. Func. Ecol. 6:423–435.CrossRefGoogle Scholar
  60. Espelta, J. M. 1996. Regeneration of holm oak (Quercus ilex)-Aleppo pine (Pinus halepensis) forests: Experimental study of seedling response to light intensity and water availability. Ph.D. diss., Autonomous University of Barcelona.Google Scholar
  61. —,M. Riba &J. Retana. 1995. Patterns of seedling recruitment in West-MediterraneanQuercus ilex forests influenced by canopy development. J. Veg. Sci. 6: 465–472.CrossRefGoogle Scholar
  62. Gandullo, J. M. 1972. Ecologia de los pinares españoles. III.Pinus halepensis Mill. I. F. I. E., Madrid.Google Scholar
  63. Gil, L. &M. P. Prada. 1993. Los pinos como especies básicas de la restauración forestal en el medio mediterráneo. Ecología 7: 113–126.Google Scholar
  64. —,J. Gordo, R. Alia, G. Catalán &J. A. Pardos. 1990.Pinus pinaster Aiton en el paisaje vegetal de la Peninsula Ibérica. Ecología Fuera de Serie 1: 469–496.Google Scholar
  65. Gill, A. M. 1981. Adaptive responses of Australian vascular plant species to fires. Pp. 243–272in A. M. Gill, R. H. Groves & I. R. Noble (eds.), Fire and the Australian Biota. Australian Academy of Science, Canberra.Google Scholar
  66. Giovannini, G., P. Piussi &F. Salbitano. 1992. Ecology of vegetative regeneration after coppicing in machia stands in central Italy. Vegetatio 99-100: 331–343.CrossRefGoogle Scholar
  67. Givnish, T. J. 1988. Adaptation to sun and shade: A whole plant perspective. Austral. J. Pl. Physiol. 15: 63–92.Google Scholar
  68. Gleason, H. A. 1926. The individualistic concept of plant association. Bull. Torrey Bot. Club 53:7–26.CrossRefGoogle Scholar
  69. Green, D. G. 1989. Simulated effects of fire, dispersal and spatial pattern on competition within forest mosaics. Vegetatio 82: 139–153.CrossRefGoogle Scholar
  70. Grime, J. P. 1974. Vegetation classification by reference to strategies. Nature 244: 310–311.Google Scholar
  71. —. 1979. Plant strategies and vegetation processes. John Wiley, London.Google Scholar
  72. Grubb, P. 1977. The maintenance of species richness in plant communities: The importance of the regeneration niche. Biol. Rev. 52: 107–145.CrossRefGoogle Scholar
  73. Hanes, T. L. 1971. Succession after fire in the chaparral of Southern California. Ecol. Monogr. 41: 27–52.CrossRefGoogle Scholar
  74. Harada, Y. &Y. Iwasa. 1995. Lattice population dynamics for plants with dispersing seeds and vegetative propagation. Res. Populat. Ecol. 36: 237–249.CrossRefGoogle Scholar
  75. Harper, J. L. 1977. Population biology of plants. Academic Press, London.Google Scholar
  76. Herrera, C. M. 1992. Historical effects and sorting processes as explanations for contemporary ecological patterns: Character syndromes in Mediterranean woody plants. Amer. Nat. 140: 421–446.CrossRefGoogle Scholar
  77. Hirose, T. 1987. A vegetative plant growth model: Adaptive significance of phenotypic plasticity in matter partitioning. Func. Ecol. 1: 195–202.CrossRefGoogle Scholar
  78. Hobbs, R. J. &H. A. Mooney. 1985. Vegetative regrowth following cutting in the shrubBaccharis pilularis subsp.consanguinea (DC) C. B. Wolf. Amer. J. Bot. 72: 514–519.CrossRefGoogle Scholar
  79. Horn, H. S. 1971. The adaptive geometry of trees. Princeton University Press, Princeton.Google Scholar
  80. —. 1974. The ecology of secondary succession. Ann. Rev. Ecol. Syst. 5: 25–37.CrossRefGoogle Scholar
  81. —. 1975. Forest succession. Sci. Amer. 232: 19–27.CrossRefGoogle Scholar
  82. —,H. H. Shugart &D. L. Urban. 1989. Simulators as models of forest dynamics. Pp. 256–267in J. Roughgarden, R. M. May & S. A. Levin (eds.), Perspectives in ecological theory. Princeton University Press, Princeton, NJ.Google Scholar
  83. Jacob, F. 1977. Evolution and tinkering. Science 196: 1161–1166.PubMedCrossRefGoogle Scholar
  84. James, S. 1984. Lignotubers and burls: Their structure, function and ecological significance in Mediterranean ecosystems. Bot. Rev. (Lancaster) 50: 226–266.CrossRefGoogle Scholar
  85. Kamada, M. & N. Nakagoshi. 1993. Pine forest structure in a human-dominated landscape system in Korea. Ecol. Res. 8: 35–46.CrossRefGoogle Scholar
  86. Keeley, J. 1986. Resilience of Mediterranean shrub communities to fires. Pp. 95–112in B. Dell, A. J. M. Hopkins & B. B. Lamont (eds.), Resilience in Mediterranean-type ecosystems. W. Junk Publishers, Dordrecht.Google Scholar
  87. — 1991. Seed germination and life histories syndromes in the California chaparral. Bot. Rev. (Lancaster) 57: 81–116.CrossRefGoogle Scholar
  88. — 1992. Recruitment of seedlings and vegetative sprouts in unburned chaparral. Ecology 73: 1194–1208.CrossRefGoogle Scholar
  89. —. &P. Zedler. 1978. Reproduction of chaparral shrubs after fire: A comparison of sprouting and seedling strategies. Amer. Midl. Naturalist 99: 142–161.CrossRefGoogle Scholar
  90. Kitajima, K. 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98: 419–428.CrossRefGoogle Scholar
  91. Kobe, R., S. W. Pacala, J. A. Silander Jr. &C. D. Canham. 1993. Juvenile tree survivorship as a component of shade tolerance. Ecol. Appl. 3: 517–532.Google Scholar
  92. Kolb, T. E., K. C. Steiner, L. H. McCormick &T. W. Bowersox. 1990. Growth response of northern red-oak and yellow-poplar seedlings to light, soil moisture and nutrients in relation to ecological strategies. Forest Ecol. Manage. 38: 65–78.CrossRefGoogle Scholar
  93. Kruger, F. J. &R. C. Bigalke. 1984. Fire in fynbos. Pp. 67–114in P. V. Booysen & N. M. Taynton (eds.), Ecological effects of fire in South African ecosystems. Springer-Verlag, Berlin.Google Scholar
  94. —,D. T. Mitchell &J. U. M. Jarvis, eds. 1983. Mediterranean-type ecosystems: The role of nutrients. Springer-Verlag, Berlin.Google Scholar
  95. Kummerov, J. 1973. Comparative anatomy of sclerophylls of Mediterranean climate areas. Pp. 157–167in F. di Castri & H. A. Mooney (eds.) Mediterranean-type ecosystems: Origin and structure. Springer-Verlag, Berlin.Google Scholar
  96. —. 1981. Structure of roots and root systems. Pp. 269–288in F. di Castri, D. W. Goodall & R. L. Specht (eds.), Mediterranean-type shrublands. Elsevier Scientific Publishing Co., Amsterdam.Google Scholar
  97. —,D. Krause &W. Jow. 1977. Root systems of chaparral shrubs. Oecologia 29: 163–177.Google Scholar
  98. Larcher, W., J. A. P. V. De Moraes &H. Bauer. 1981. Adaptive responses of leaf water potential, CO2 exchange and water use deficiency ofOlea europaea during drying and rewatering. Pp. 77–84in N. S. Margaris and H. A. Mooney (eds.), Components of productivity of Mediterranean-climate regions: Basic and applied aspects. W. Junk Publishers, The Hague.Google Scholar
  99. Ledig, F. T. 1992. Human impacts on genetic diversity in forest ecosystems. Oikos 63: 87–108.CrossRefGoogle Scholar
  100. — &T. O. Perry. 1966. Physiological genetics of the shoot-root ratio. Proc. Soc. Amer. Foresters, 1965, pp. 30–43.Google Scholar
  101. Le Maitre, D. C., C. A. Jones &G. G. Forsyth. 1992. Plant reproductive ecology. Pp. 135–174in R. M. Cowling (ed.), The ecology of fynbos: Nutrients, fire and diversity. Oxford University Press, Cape Town.Google Scholar
  102. López Soria, L. &C. Castell. 1992. Comparative genet survival after fire in woody Mediterranean species. Oecologia 91: 493–499.CrossRefGoogle Scholar
  103. Lorimer, C. G.. 1989. Relative effects of small and large disturbances on temperate hardwood forest structure. Ecology 70: 565–567.CrossRefGoogle Scholar
  104. MacArthur, R. H. 1972. Geographical ecology. Harper &Row, New York.Google Scholar
  105. — &E. O. Wilson. 1967. The theory of island biogeography. Princeton University Press, Princeton, NJ.Google Scholar
  106. Malanson, G. P. &J. F. O’Leary. 1995. The coastal sage scrub-chaparral boundary and responses to global climate change. Pp. 203–224in J. M. Moreno & W. C. Oechel (eds.), Global change in Mediterranean-type ecosystems. Springer-Verlag, Berlin.Google Scholar
  107. Matsuda, K. &J. R. McBride. 1986. Difference in seedling growth morphology as a factor in the distribution of three woodlands oaks of Central California. Madroño 33: 207–216.Google Scholar
  108. —— &M. Kimura. 1989. Seedling growth form of oaks. Ann. Bot. 64: 439–446.Google Scholar
  109. Mayor, X. &F. Rodá. 1993. Growth response of holm oak (Quercus ilex L.) to commercial thinning in the Montseny mountains (N.E. Spain). Ann. Sci. For. 50: 247–256.CrossRefGoogle Scholar
  110. —,R. Belmonte, A. Rodrigo, F. Rodá &J. Piñol. 1994. Crecimiento diametral de la encina (Quercus ilex L.) en un año de abundante precipitación estival: Efecto de la irrigación previa y de la fertilización. Orsis 9: 13–23.Google Scholar
  111. Mesleard, F. &J. Lepart. 1991. Germination and seedling dynamics ofArbutus unedo andErica arborea on Corsica. J. Veg. Sci. 2: 155–164.CrossRefGoogle Scholar
  112. Miller, P. C. 1981. Resource use by chaparral and matorral: A comparison of vegetation function in two Mediterranean-type ecosystems. Springer-Verlag, Berlin.Google Scholar
  113. Minnich, R. A. 1983. Fire mosaics in Southern California and Northern Baja California. Science 219: 1287–1294.PubMedCrossRefGoogle Scholar
  114. Moloney, K. &S. A. Levin. 1996. The effects of disturbance architecture on landscape-level population dynamics. Ecology 77: 375–394.CrossRefGoogle Scholar
  115. Montoya, J. M. 1989. Encinas y encinares. Ediciones Mundi-Prensa, Madrid.Google Scholar
  116. —. 1990. La restauración del bosque mediterráneo. Ecología Fuera de Serie 1: 447–462.Google Scholar
  117. Mooney, H. A. 1972. The carbon balance of plants. Ann. Rev. Ecol. Syst. 3: 315–346.CrossRefGoogle Scholar
  118. —. 1983. Carbon-gaining capacity and allocation patterns of Mediterranean climate plants. Pp. 103–119 in F. J. Kruger, D. T. Mitchell & J. U. M. Jarvis (eds.), Mediterranean-type ecosystems: The role of nutrients. Springer-Verlag, Berlin.Google Scholar
  119. — &H. A. Dunn. 1970. Convergent evolution of Mediterranean evergreen sclerophyllous shrubs. Evolution 24: 292–303.CrossRefGoogle Scholar
  120. Moravec, J. 1990. Regeneration of N.W. AfricanPinus halepensis forests following fire. Vegetatio 87: 29–36.CrossRefGoogle Scholar
  121. Moreno, J. M. &W. C. Oechel, eds. 1995. Global change in Mediterranean-type ecosystems. Springer-Verlag, Berlin.Google Scholar
  122. Morla, C. 1993. Significación de los pinares en el paisaje vegetal de la Peninsula Ibérica. Pp. 361–370in J. Silva &G. Vega (eds.), I Congreso Forestal Español: Ponencias y comunicaciones. Pontevedra.Google Scholar
  123. Mullet, K. J. &R. K. Bamber. 1978. Studies of the lignotubersof Eucalyptus gummifera (Gaertn. &Hochr.). III. Inheritance and chemical composition. Austral. J. Bot. 26: 23–38.CrossRefGoogle Scholar
  124. Nakagoshi, N., K. Nehira &F. Takahashi. 1987. The role of fire in pine forests of Japan. Pp. 91–119in L. Trabaud (ed.), The role of fire in ecological systems. SPB Academic Publishing, The Hague.Google Scholar
  125. Naveh, Z. 1971. The conservation of ecological diversity of Mediterranean ecosystems through ecological management. Pp. 605–622in E. Duffey & A. S. Watt (eds.), The scientific management of animal and plant communities for conservation. Proceedings of the Symposium of the British Ecological Society 11. Blackwell, London.Google Scholar
  126. —. 1975. The evolutionary significance of fire in the Mediterranean region. Vegetatio 29:199–208.CrossRefGoogle Scholar
  127. —. 1987. Landscape ecology, management and conservation of European and Levant Mediterranean uplands. Pp. 641–657in J. D. Tenhunen, F. M. Catarino, O. L. Lange & W. C. Oechel (eds.), Plant response to stress: Functional analysis in Mediterranean ecosystems. Springer-Verlag, Berlin.Google Scholar
  128. — &J. Dan. 1973. The human degradation of Mediterranean landscapes in Israel. Pp. 370–390in F. di Castri & H. A. Mooney (eds.), Mediterranean-type ecosystems: Origin and structure. Springer-Verlag, Berlin.Google Scholar
  129. — &A. S. Lieberman. 1984. Landscape ecology: Theory and application. Springer-Verlag, Berlin.Google Scholar
  130. — &R. H. Whittaker. 1979. Structural and floristic diversity of shrublands and woodlands in northern Israel and other Mediterranean areas. Vegetatio 41: 171–190.CrossRefGoogle Scholar
  131. Noble, I. R. 1984. Mortality of lignotuberous seedlings ofEucalyptus species after an intense fire in montane forest. Austral. J. Ecol. 9: 47–50.CrossRefGoogle Scholar
  132. — &R. O. Slatyer. 1980. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43: 5–21.CrossRefGoogle Scholar
  133. Oechel, W. C. 1988. Minimum non-lethal water potentials in Mediterranean shrub seedlings. Pp. 125–131in F. di Castri, C. Floret, S. Rambal & J. Roy (eds.), Time scales and water stress. International Union of Biological Sciences, Paris.Google Scholar
  134. — &J. Mustafa. 1979. Energy utilization and carbon metabolism in Mediterranean scrub vegetation of Chile and California. II. The relationship between photosynthesis and cover in chaparral evergreen shrubs. Oecologia 41: 305–315.CrossRefGoogle Scholar
  135. Oliveira, G., O. A. Correia, M. A. Martins-Louçao &F. M. Catarino. 1992. Water relations of corkoak (Quercus suber L). Vegetatio 99-100: 199–208.CrossRefGoogle Scholar
  136. Orians, G. &R. T. Paine. 1983. Convergent evolution at the community level. Pp. 431–458in D. J. Futuyma & M. Slatkin (eds.), Coevolution. Sinauer Associates, Sunderland, MA.Google Scholar
  137. — &O. T. Solbrig. 1977. A cost-income model of leaves and roots with special reference to arid and semi-arid areas. Amer. Nat. 111: 677–690.CrossRefGoogle Scholar
  138. Pacala, S. W. 1986. Neighborhood models of plant population dynamics. 2. Multi-species models of annuals. Theor. Pop. Biol. 29: 262–292.CrossRefGoogle Scholar
  139. — &D. H. Deutshman. 1995. Details that matter: The spatial distribution of individual trees maintains forest ecosystem function. Oikos 74: 357–365.CrossRefGoogle Scholar
  140. —,C. D. Canham, J. Saponara, J. A. Silander, R. K. Kobe &E. Ribbens. 1996. Forest models defined by field measurements: Estimation, error analysis and dynamics. Ecol. Monogr. 66: 1–43.CrossRefGoogle Scholar
  141. Panetsos, K. P. 1981. Monograph ofPinus halepensis (Mill.) andPinus brutia (Ten.). Ann. Forest. 9: 39–77.Google Scholar
  142. Pate, J. S., R. H. Froend, B. J. Bowen, A. Hansen &J. Kuo. 1990. Seedling growth and storage characteristics of seeder and resprouter species of Mediterranean-type ecosystems of S.W. Australia. Ann. Bot. 65: 585–601.Google Scholar
  143. Pérez-Obiol, R. &R. Juliá. 1994. Climatic change on the Iberian Peninsula recorded in a 30,000 year pollen record from Lake Banyoles. Quaternary Res. 41: 91–98.CrossRefGoogle Scholar
  144. Pickett, S. T. A. &P. S. White, eds. 1985. The ecology of natural disturbance and patch dynamics. Academic Press, New York.Google Scholar
  145. Pigott, C. D. &S. Pigott. 1993. Water as a determinant of the distribution of trees at the boundary of the Mediterranean zone. J. Ecol. 81: 557–566.CrossRefGoogle Scholar
  146. Pons, A. &P. Quézel. 1985. The history of the flora and vegetation and past and present human disturbance in the Mediterranean region. Pp. 25–43in C. Gómez-Campo (ed.), Plant conservation in the Mediterranean. W. Junk Publishers, The Hague.Google Scholar
  147. — &M. Reille. 1980. The Holocene and upper Pleistocene pollen record from Padul (Granada, Spain): A new study. Palaeogeogr. Paleoclimatol. Palaeoecol. 66: 243–266.CrossRefGoogle Scholar
  148. — &J. L. Vernet. 1971. Une Synthèse nouvelle de l’histoire du chêne vert (Quercus ilex L.). Bull. Soc. Bot. France 118: 841–856.Google Scholar
  149. Poorter, H. &H. Lambers. 1991. Is interspecific variation in relative growth rate positively correlated with biomass allocation to the leaves? Amer. Nat. 138: 1264–1268.CrossRefGoogle Scholar
  150. Pugnaire, F. I., P. Haase &J. Puigdefábregas. 1996. Facilitation between higher plant species in a semiarid environment. Ecology 77: 1420–1426.CrossRefGoogle Scholar
  151. Rambal, S. 1984. Water balance and pattern of root uptake by aQuercus coccifera L. evergreen scrub. Oecologia 62: 18–25.CrossRefGoogle Scholar
  152. Rapp, M. &P. Loissant. 1981. Some aspects of mineral cycling in the garrigue of southern France. Pp. 289–301in F. di Castri, D. W. Goodall & R. L. Specht (eds.), Mediterranean-type shrublands. Elsevier Scientific Publishing Co., Amsterdam.Google Scholar
  153. Reille, M. &A. Pons. 1992. The ecological significance of sclerophyllous oak forests in the western part of the Mediterranean basin: A note on pollen analytical data. Vegetatio 99-100: 13–17.CrossRefGoogle Scholar
  154. Remmert, H., ed. 1991. The mosaic-cycle concept of ecosystems. Springer-Verlag, Berlin.Google Scholar
  155. Retana, J., M. Riba, C. Castell &J. M. Espelta. 1992. Regeneration by sprouting of holm oak (Quercus ilex) stands exploited by selection thinning. Vegetatio 99-100: 355–364.CrossRefGoogle Scholar
  156. —,J. M. Espeita &M. Gracia. 1996. Caracterización de masas mixtas de pino carrasco y encina en el Montseny (nordeste de la Península Ibérica). Cuadernos de la S.E.C.F. 3: 167–179.Google Scholar
  157. —,J. M. Espelta, M. Gracia &M. Riba. 1999. Seedling recruitment. Pp. 89–103in F. Rodà, J. Retana, C. Gracia & J. Bellot (eds.), Ecology of Mediterranean evergreen oak forests. Springer-Verlag, Berlin.Google Scholar
  158. Rivas-Martínez, S. 1972. Relaciones entre los suelos y su vegetación: Algunas consideraciones sobre su fundamento. Anal. Real Acad. Farmacia 38: 69–94.Google Scholar
  159. —. 1987. Mapa de series de vegetación de España. Memoria del mapa de series de vegetación de España. ICONA, Madrid.Google Scholar
  160. Romane, F., C. Floret, M. Galan, M. Grandjanny, E. Le Floc’h, M. Maistre &P. Perret. 1988. Quelques remarques sur les tailles de chênes verts: Répartition, histoire, biomasse. Forêt Méditer-ranéenne 10:131–135.Google Scholar
  161. —,R. Bacillieri, D. Bran &M. A. Bouchet. 1992. Natural degenerate Mediterranean forests: Which future? The examples of holm oak (Quercus ilex) and chestnut (Castanea sativa) coppice stands. Pp. 374–380in A. Teller, P. Mathy & J. N. R. Jeffers (eds.), Responses of forest ecosystems to environmental changes. Elsevier Applied Science, London.Google Scholar
  162. Ruiz de la Torre, J.. 1971. Árboles y arbustos de la España peninsular. Escuela Técnica Superior de Ingenieros de Montes, Madrid.Google Scholar
  163. —. 1973. Significación de los pinares xerófilos. Vida Silvestre 6: 108–113.Google Scholar
  164. —. 1985. Conservation of plants within their native ecosystems. Pp. 197–219in C. Gómez-Campo (ed.), Plant conservation in the Mediterranean. W. Junk Publishers, The Hague.Google Scholar
  165. —. 1990. Distribución y caracteristicas de las masas forestales españolas. Ecología Fuera de Serie 1: 11–30.Google Scholar
  166. Rundel, P. W. 1988. Vegetation, nutrition and climate: Examples of integration. 3. Leaf structure and nutrition in Mediterranean-climate sclerophylls. Pp. 157–167in R. L. Specht (ed.), Mediterraneantype ecosystems: A data source book. W. Junk Publishers, Dordrecht.Google Scholar
  167. Sala, A. 1992. Water relations, canopy structure, and canopy gas exchange in aQuercus ilex forest: Variation in time and space. Ph.D. diss., Autonomous University of Barcelona.Google Scholar
  168. Sardans, J. 1993. Efecte de la disponibilitat d’aigua, de nutrients i de la presència de veïns sobre el creixement i la morfometria foliar de les espècies llenyoses dominants en una comunitat postincendi. M.Sc. thesis, Autonomous University of Barcelona.Google Scholar
  169. Schaeffer, R. &R. Moreau. 1958. L’Alternance des essences. Bull. Soc. For. 1: 3–297.Google Scholar
  170. Schoener, T. W.. 1986. Mechanistic approaches to community ecology: A new reductionism? Amer. Zool. 26: 81–106.Google Scholar
  171. Schulze, E. D., R. H. Robichaux, J. Grace, P. W. Rundel &J. R. Ehleringer. 1987. Plant water balance. BioScience 37: 30–37.CrossRefGoogle Scholar
  172. Shugart, H. H. 1984. A theory of forest dynamics: The ecological implications of forest succession models. Springer-Verlag, Berlin.Google Scholar
  173. Silvertown, J. 1982. Introduction to plant population ecology. Longman, London.Google Scholar
  174. Smith, R. E., B. W. van Wilgen, G. G. Forsyth &D. M. Richardson. 1992. Coexistence of seeders and sprouters in a fire-prone environment: The role of ecophysiology and soil moisture. Pp. 108–122in B. W. van Wilgen, D. M. Richardson, F. J. Kruger & H. J. van Hensbergen (eds.), Fire in South African fynbos. Springer-Verlag, Berlin.Google Scholar
  175. Smith, T. M. &M. A. Huston. 1989. A theory of the spatial and temporal dynamics of plant communities. Vegetatio 83: 49–69.CrossRefGoogle Scholar
  176. Specht, R. L. 1981. Responses to fires in heathlands and related shrublands. Pp. 395–415in A. M. Gill, R. H. Groves & I. R. Noble (eds.), Fire and the Australian biota. Australian Academy of Sciences, Canberra.Google Scholar
  177. — &E. J. Moll. 1983. Mediterranean-type heathlands and sclerophyllous shrublands of the world: An overview. Pp. 41–65in F. J. Kruger, D. T. Mitchell & J. U. M. Jarvis (eds.), Mediterranean-type ecosystems: The role of nutrients. Springer-Verlag, Berlin.Google Scholar
  178. Spurr, S. H. 1954. The forest of Itasca in the nineteenth century as related to fire. Ecology 35: 21–25.CrossRefGoogle Scholar
  179. Stephenson, N. L. 1990. Climatic control of vegetation distribution: The role of the water balance. Amer. Nat. 135:649–670.CrossRefGoogle Scholar
  180. Stohlgren, T. L. &P. W. Rundel. 1986. A population model for a long lived, resprouting chaparral shrub:Adenostoma fasciculatum. Ecol. Model. 34: 245–257.CrossRefGoogle Scholar
  181. —— &D. J. Parsons. 1989. Stable population size class distribution in mature chamise chaparral. Pp. 57–64in S. C. Keeley (ed.), The California chaparral: Paradigms reexamined. No 34 Science Series, Nat. Hist. Museum of L.A. County, Los Angeles.Google Scholar
  182. Strauss, S. H. &F. T. Ledig. 1985. Seedling architecture and life history evolution in pines. Amer. Nat. 125:702–715.CrossRefGoogle Scholar
  183. Tenhunen, J. D., J. F. Reynolds, S. Rambal, R. Dougherty &J. Kummerov. 1989. QUINTA: A physiologically-based growth simulator for drought adapted woody plant species. Pp. 135–168in J. S. Pereira & J. Landsberg (eds.), Biomass production for fast-growing trees. Kluwer Academic Publishers, Dordrecht.Google Scholar
  184. F. M. Catarino, O. L. Lange &W. C. Oechel, eds. 1987. Plant responses to stress: Functional analysis in Mediterranean ecosystems. NATO Advanced Science Institute Series. Springer-Verlag, Berlin.Google Scholar
  185. Terradas, J. &R. Savé. 1992. The influence of summer and winter stress and water relationships on the distribution ofQuercus ilex L.. Vegetatio 99-100: 137–145.CrossRefGoogle Scholar
  186. Tetriach, M. 1993. Photosynthesis and transpiration of evergreen Mediterranean and deciduous trees in an ecotone during a growing season. Acta Oecol. 14: 341–360.Google Scholar
  187. Thirgood, J. V. 1981. Man and the Mediterranean forest. Academic Press, New York.Google Scholar
  188. Thomas, C. M. &S. D. Davis. 1989. Recovery patterns of three chaparral species after wildfire. Oecologia 80: 309–320.CrossRefGoogle Scholar
  189. Tilman, D. 1982. Resource competition and community structure. Princeton University Press, Princeton, NJ.Google Scholar
  190. —. 1988. Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton, NJ.Google Scholar
  191. —. 1990. Constraints and tradeoffs: Toward a predictive theory of competition and succession. Oikos 58:3–15.CrossRefGoogle Scholar
  192. Trabaud, L. 1984. Fire adaptation strategies of plants in the French Mediterranean region. Pp. 63–69in N. S. Margaris, M. Arianotsu-Faraggitaki & W. C. Oechel (eds.), Being alive on land. Kluger, Dordrecht.Google Scholar
  193. —,C. Michels &J. Grosman. 1985. Recovery of burntPinus halepensis Mill. forests. II. Pine reconstitution after wildfire. Forest Ecol. Manage. 13: 167–179.CrossRefGoogle Scholar
  194. Wang, Z. Q., M. Newton &J. C. Tappeiner II. 1995. Competitive relations between douglas-fir and Pacific madrone on shallow soils in a Mediterranean climate. Forest Sci. 41: 744–757.Google Scholar
  195. Westman, W. E.. 1986. Resilience: Concepts and measures. Pp. 5–19in B. Dell, A. J. M. Hopkins & B. B. Lamont (eds.), Resilience in Mediterranean-type ecosystems. W. Junk Publishers, Dordrecht.Google Scholar
  196. Whitehead, D. &R. O. Teskey. 1995. Dynamics response of stomata to changing irradiance in loblolly pine (Pinus taeda L.). Tree Physiol. 15: 245–251.PubMedGoogle Scholar
  197. Whittaker, R. H. 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.CrossRefGoogle Scholar
  198. —. 1975. Communities and ecosystems. Macmillan, New York.Google Scholar
  199. — &S. A. Levin. 1977. The role of mosaic phenomena in natural communities. Theor. Pop. Biol. 12: 117–139.CrossRefGoogle Scholar
  200. Woodward, F. I. 1987. Climate and plant distribution. Cambridge University Press, Cambridge, England.Google Scholar
  201. Yll, E. I., R. Pérez-Obiol &R. Juliá. 1994. Vegetation change in the Balearic Islands (Spain) during the Holocene. Hist. Biol. 9: 83–89.CrossRefGoogle Scholar
  202. ——,J. Pantaleón-Cano &J. M. Roure. 1995. Dinámica del paisaje vegetal en la vertiente mediterránea de la Península Ibérica e Islas Baleares desde el tardiglaciar hasta el presente. Pp. 319–328in T. Aleixandre & A. Pérez-González (eds.), Reconstrucción de paleoambientes y cambios climáticos durante el Cuaternario. Monografías C.S.I.C, Madrid.Google Scholar
  203. Zammit, C. A. &M. Westoby. 1987. Seedling recruitment strategies in obligate-seeding and resprouting Banksia shrubs. Ecology 68: 1984–92.CrossRefGoogle Scholar
  204. Zedler, P. H. 1981. Vegetation change in chaparral and desert communities in San Diego communities in San Diego County, California. Pp. 406–430in D. C. West, H. H. Shugart & D. B. Botkin (eds.), Forest succession: Concepts and application. Springer-Verlag, New York.Google Scholar
  205. — &C. A. Zammitt. 1989. A population-based critique of concepts of change in the chaparral. Pp. 73–83in S. C. Keeley (ed.), The California chaparral: Paradigms reexamined. No 34 Science Series, Nat. Hist. Museum of L.A. County, Los Angeles.Google Scholar
  206. Zwieniecki, M. A. &M. Newton. 1994. Root distribution of 12-year-old forests at rocky sites in southwestern Oregon: Effects of rocky physical properties. Canad. J. Forest Res. 24: 1791–1796.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2000

Authors and Affiliations

  • M. A. Zavala
    • 1
  • J. M. Espelta
    • 2
  • Javier Retana
    • 3
  1. 1.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA
  2. 2.CREAFAutonomous University of BarcelonaBellaterra (Barcelona)Spain
  3. 3.CREAFAutonomous University of BarcelonaBellaterra (Barcelona)Spain

Personalised recommendations