The Botanical Review

, Volume 66, Issue 1, pp 89–98 | Cite as

The role of superoxide dismutase in combating oxidative stress in higher plants

  • Sarmistha Sen Raychaudhuri
  • Xing Wang Deng
Interpreting Botanical Progress


Superoxide dismutase (SOD) isozymes are compartmentalized in higher plants and play a major role in combating oxygen radical mediated toxicity. In this review we evaluate the mode of action and effects of the SOD isoforms with respect to oxidative stress resistance, correlating age, species, and specificity of plants during development.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alscher, R. G. &J. L. Hess. 1993. Antioxidants in higher plants. CRC Press, Boca Raton, FL.Google Scholar
  2. Asada, K. &M. Takahashi. 1987. Production and scavenging of active oxygen in photosynthesis. Pp. 227–287 in D. J. Kyle, C.B. Osmond & C. J. Arntzen (eds.), Photoinhibition. Elsevier Science Publishers, Amsterdam.Google Scholar
  3. Bannister, J. V., W. H. Bannister &G. Rottilo. 1987. Aspects of the structure, function and applications of Superoxide dismutase. CRC Crit. Rev. Biochem. 22: 111–180.PubMedCrossRefGoogle Scholar
  4. Becker, J., V. Mezger, A. M. Courgeon &M. Best-Belpomme. 1990. Hydrogen peroxide activates immediate binding of aDrosophila factor to DNA heat shock regulatory elementin vivo andin vitro. Eur. J. Biochem. 189: 553–558.PubMedCrossRefGoogle Scholar
  5. Bowler, C., L. Slooten, S. Vandenbranden, R. De Rycke, J. Botterman, C. Cybesma, M. Van Montagu &D. Inze. 1991. Manganese Superoxide dismutase can reduce cellular damage mediate by oxygen radicals in transgenic plants. EMBO J. 10: 1723–1732.PubMedGoogle Scholar
  6. —,W. Van Camp, M. Van Montagu &D. Inze. 1994. Superoxide dismutase in plants. CRC Crit. Rev. Pl. Sc. 13: 199–218.CrossRefGoogle Scholar
  7. Conklin, P. L. &R. L. Last. 1995. Differential accumulation of antioxidant mRNAs inArabidopsis thaliana exposed to ozone. Pl. Physiol. 109: 203–212.CrossRefGoogle Scholar
  8. Decleire, M., W. de Cat, L. de Tepperman &H. Baeten. 1984. Changes of peroxidase, catalase and superoxide dismutase activities in ozone fumigated spinach leaves. J. Pl. Physiol. 116: 147–152.Google Scholar
  9. De Marco, M. &K. A. Roubelakis Angelakis. 1996. The complexity of enzymic control of H2O2 concentration may affect the regeneration potential of plant protoplast. Pl. Physiol. 110: 249–259.Google Scholar
  10. Donahue, J. L., C. M. Okopodu, C. L. Cramer, E. A. Grabau &R. G. Alscher. 1997. Responses of antioxidants to paraquat in pea leaves. Pl. Physiol. 113: 249–254.Google Scholar
  11. Floyd, R. A., M. S. West, W. E. Hogsett &D. T. Tingey. 1989. Increased 8-hydroxyguanine content of chloroplast DNA from ozone treated plants. Pl. Physiol. 91: 644–648.CrossRefGoogle Scholar
  12. Foyer, C. H., P. Descourvieres &K. J. Kunert. 1994a. Protection against oxygen radicals: An important defense mechanism studied in transgenic plants. Pl. Cell Environ. 17: 507–523.CrossRefGoogle Scholar
  13. —,M. Lelandais &K. J. Kunert. 1994b. Photooxidative stress in plants. Physiol. Plant. 92: 696–717.CrossRefGoogle Scholar
  14. Frolova, N. P., O. N. Popova &A. I. Taskaev. 1991. Seed regeneration in a natural population ofPlantago lanceolata L. in areas with different gamma background levels. Radiobiologia 31: 167–170.Google Scholar
  15. ———. 1993. A rise in the incidence of teratological changes inPlantago lanceo- lataL seedlings of the 5th post accident in the 30 kilometer area of the Chernobyl Atomic Electric Power Station. Radiobiologia 33: 179–182.Google Scholar
  16. Grimes, H. D., K. K. Perkins &W. F. Boss. 1983. Ozone degrades into hydroxyradicle under physiological conditions: A spin trapping study. Pl. Physiol. 72: 1016–1020.CrossRefGoogle Scholar
  17. Halliwell, B. 1984. Chloroplast metabolism: The structure and function of chloroplasts in green leaf cells. Clarendon Press, Oxford.Google Scholar
  18. — &J. M. C. Gutteridge. 1989. Free radicals in biology and medicine. Clarendon Press, Oxford.Google Scholar
  19. Herouart, D., M. Van Montagu &D. Inze. 1993. Redox activated expression of the cytosolic copper/zinc Superoxide dismutase gene inNicotiana. Proc. Nat. Acad. Sci. 90: 3108–3112.PubMedCrossRefGoogle Scholar
  20. ———, 1994. Developmental and environmental regulation of theNicotiana plumbaginifolia cytosolic Cu/Zn Superoxide dismutase promoter in transgenic tobacco. Pl. Physiol. 104: 873–880.CrossRefGoogle Scholar
  21. Hopkin, K. A., M. A. Papazian &H. M. Steinman. 1992. Functional differences between manganese and iron Superoxide dismutases inEscherichia coli. K 12. J. Biol. Chem. 267: 24253–24258.PubMedGoogle Scholar
  22. Jordan, B. R., J. Me, W. S. Chow &J. M. Anderson. 1992. Changes in mRNA levels and polypeptide subunits of ribulose 1,5-biphosphate carboxylase in response to supplementary ultraviolet B radiation. Pl. Cell Environ. 17: 783–794.Google Scholar
  23. Kangasjarvi, J., J. Talvinen, M. Utrianen &K. Karjalainen. 1994. Plant defence systems induced by ozone. Pl. Cell Environ. 17: 783–794.CrossRefGoogle Scholar
  24. Kapoor, M., G. M. Sreenivasan, N. Goel &J. Lewis. 1990. Development of thermotolerance inNeurospora crassa by heat shock and other stresses eliciting peroxidase induction. J. Bacteriol. 172: 2798–2801.PubMedGoogle Scholar
  25. Kernodle, S. P. &J. S. Scandalios. 1996. A comparison of the structure and function of the highly homologous maize antioxidant Cu/Zn Superoxide dismutase genes, Sod 4 and Sod 4A. Genetics 144: 317–328.PubMedGoogle Scholar
  26. Krupa, S. V. &R. M. Kickert. 1989. The greenhouse effect: The impact of carbon dioxide, ultraviolet B radiation (UV B) and ozone on vegetation. Environ. Pollution 17: 783–794.Google Scholar
  27. — &W. J. Manning. 1988. Atmospheric ozone: Formation and effects on vegetation. Environ. Pollution 50: 101–137.CrossRefGoogle Scholar
  28. Mehlhoen, H., B. Tabner &A. R. Wellburn. 1990. Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiol. Pl. 79: 377–383.CrossRefGoogle Scholar
  29. Morgan, R. W., M. F. Christman, F. S. Jacobson, G. Store &B. N. Ames. 1986. Hydrogen peroxide inducible proteins inSalmonella typhimurium overlap with heat shock and other stress proteins. Proc. Nat. Acad. Sci. 83: 8059–8063.PubMedCrossRefGoogle Scholar
  30. Pell, E. J., N. A. Eckardt &R. E. Glick. 1994. Biochemical and molecular basis for impairment of photosynthetic potential. Photosyn. Res. 39: 453–462.CrossRefGoogle Scholar
  31. Perl Treves, R. &E. Galun. 1991. The tomato Cu, Zn Superoxide dismutase genes are developmentally regulated and respond to light and stress. Pl. Mol. Biol. 17: 745–760.CrossRefGoogle Scholar
  32. Pramanik, S. 1997. Cytochemical, cytological and biochemical studies ofPlantago ovata Forsk. in tissue culture. Ph.D. diss., University of Calcutta.Google Scholar
  33. —,S. Chakraborty &E. Galun. 1995.In vitro clonal propagation and characterization of clonal regenerants ofPlantago ovata Forsk. by isozyme analysis. Cytobios 82: 123–130.Google Scholar
  34. —,S. Sen Raychaudhuri &S. Chakraborty. 1996. Changes in esterase and Superoxide dismutase isozymes duringin vitro morphogenesis inPlantago ovata Forsk. Pl. Cell Tissue Organ Cult. 44: 123–127.CrossRefGoogle Scholar
  35. Prasad, T. K., M. D. Anderson, B. A. Martin &C. R. Stewart. 1994. Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Pl. Cell. 6:65–74.Google Scholar
  36. Price, A., P. W. Lucas &P. J. Lee. 1990. Age dependent damage and glutathione metabolism in ozone fumigated barley: A leaf section approach. J. Exp. Biol. 41: 1309–1317.Google Scholar
  37. Privalle, C. T. &I. Fridovich. 1987. Induction of Superoxide dismutase inEscherichia coli by heat shock. Proc. Natl. Acad. Sci. 84: 2723–2726.PubMedCrossRefGoogle Scholar
  38. Rao, M. V. &D. P. Ormrod. 1995a. Ozone preexposure decreases UV B sensitivity in a UV B sensitive flavonoid mutant ofArabidopsis. Photochem. Photobiol. 61: 71–78.PubMedCrossRefGoogle Scholar
  39. ——. 1995b. Impact of UV B and ozone on oxygen free radical scavenging system inArabidopsis thaliana genotypes differing in flavonoid biosynthesis. Photochem. Photobiol. 62: 719–726.CrossRefGoogle Scholar
  40. —,G. Paliyath &D. P. Ormrod. 1995. Responses of photosynthetic pigments, rubisco activity and rubisco protein ofArabidopsis exposed to UV B and ozone. Photochem. Photobiol. 62: 727–735.CrossRefGoogle Scholar
  41. ———. 1996. Ultraviolet B and ozone induced biochemical changes in antioxidant enzymes ofArabidopsis thaliana. Pl. Physiol. 110: 125–136.CrossRefGoogle Scholar
  42. Runeckles, U. C. &S. V. Krupa. 1994. The impact of UV B radiation and ozone on terrestrial vegetation. Environ. Pollution 83: 191–123.CrossRefGoogle Scholar
  43. Sah, S., S. Pramanik &S. Sen Raychaudhuri. 1996. Peroxidase changes in barley induced by ionizing and thermal radiation. Int. J. Radiat. Biol. 69:107–111.PubMedCrossRefGoogle Scholar
  44. Schwanz, P., C. Picon, P. Vivin, E. Dreyer, J. M. Guehl &A. Polle. 1996. Responses of antioxidative systems to drought stress in pedunculate oak and maritime pine as modulated by elevated CO2. Pl. Physiol. 110: 393–402.Google Scholar
  45. Sengupta, A., L. J. Heinen, A. S. Holaday, J. J. Burke &R. D. Allen. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn Superoxide dismutase. Proc. Natl. Acad. Sci. 90: 1629–1633.CrossRefGoogle Scholar
  46. Sharma, Y. &K. R. Davies. 1994. Ozone induced expression of stress related genes inArabidopsis thaliana. Pl. Physiol. 105: 1089–1096.Google Scholar
  47. Slooten, C., K. Capiau, W. Van Camp, M. Van Montagu, C. Sybesma &D. Inze. 1995. Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese Superoxide dismutase in the chloroplast. Pl. Physiol. 107: 737–750.Google Scholar
  48. Strid, A., W. S. Chow &J. M. Anderson. 1994. UV B damage and protection at the molecular level in plants. Photosyn. Res. 39: 475–489.CrossRefGoogle Scholar
  49. Tepperman, J. M. &P. Dunsmuir. 1990. Transformed plants with elevated levels of chloroplastic SOD are not resistant to Superoxide toxicity. Pl. Mol. Biol. 14: 501–511.CrossRefGoogle Scholar
  50. Tsang, E. W. T., C. Bowler, D. Herouart, W. Van Camp, R. Villarrod, C. Genetello, M. Van Montagu &D. Inze. 1991. Differential regulation of SODs in plants exposed to environmental stress. Pl. Cell 3: 783–792.Google Scholar
  51. Van Camp, W., K. Capaiau, M. Van Montagu, D. Inze &L. Slooten. 1996. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe Superoxide dismutase in chloroplast. Pl. Physiol. 112: 1703–1714.CrossRefGoogle Scholar
  52. Willekens, H., W. Van Camp, M. Van Montagu, D. Inze, C. Langerbelts &H. Sandermann Jr. 1994. Ozone sulfur dioxide and UV B radiation have similar effects on mRNA accumulation of antioxidant genes inNicotiana plumbaginifolia. Pl. Physiol. 106: 1007–1014.Google Scholar
  53. Williams, J., M. P. Bulman &S. J. Neill. 1994. Wilt induced ABA biosynthesis, gene expression and down regulation of rbcs mRNA levels inArabidopsis thaliana. Physiol. Pl. 91: 177–182.CrossRefGoogle Scholar
  54. White, J. A., S. Plant, R. E. Cannon, G. J. Wadsworth &J. G. Scandalios. 1990. Developmental analysis of steady level of Cu/Zn and Mn Superoxide dismutase mRNAs in maize tissues. Pl. Cell Physiol. 31:1163–1167.Google Scholar
  55. Zhu, D. &J. G. Scandalios. 1993. Maize mitochondrial manganese Superoxide dismutases are encoded by a differentially expressed multigene family. Proc. Nat. Acad. Sci. 9: 9310–9314.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2000

Authors and Affiliations

  • Sarmistha Sen Raychaudhuri
    • 1
  • Xing Wang Deng
    • 2
  1. 1.Plant Molecular Biology Laboratory Department of Biophysics, Molecular Biology, and GeneticsUniversity of CalcuttaCalcuttaIndia
  2. 2.Department of Biology Osborne Memorial LaboratoriesYale UniversityNew HavenUSA

Personalised recommendations