The Botanical Review

, Volume 66, Issue 1, pp 57–88 | Cite as

Heterochrony in plant evolutionary studies through the twentieth century

  • Ping Li
  • Mark O. Johnston


The evolution of plant morphology is the result of changes in developmental processes. Heterochrony, the evolutionary change in developmental rate or timing, is a major cause of ontogenetic modification during evolution. It is responsible for both interspecific and intraspecific morphological differences. Other causes include heterotopy, the change of structural position, and homeosis, the replacement of a structure by another. This paper discusses and reviews the role of heterochrony in plant evolution at the organismal, organ, tissue, cellular, and molecular levels, as well as the relationships among heterochrony, heterotopy, and homeosis. An attempt has been made to include all published studies through late 1999. It is likely that most heterochronic change involves more than one of the six classic pure heterochronic processes. Of these processes, we found neoteny (decreased developmental rate in descendant), progenesis (earlier offset), and acceleration (increased rate) to be more commonly reported than hypermorphosis (delayed offset) or predisplacement (earlier onset). We found no reports of postdisplacement (delayed onset). Therefore, although rate changes are common (both neoteny and acceleration), shifts in timing most commonly involve earlier termination in the descendant (progenesis). These relative frequencies may change as more kinds of structures are analyzed. Phenotypic effects of evolutionary changes in onset or offset timing can be exaggerated, suppressed, or reversed by changes in rate. Because not all developmental changes responsible for evolution result from heterochrony, however, we propose that plant evolution be studied from a viewpoint that integrates these different developmental mechanisms.


Botanical Review Flower Development Floral Organ Leaf Development Developmental Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alberch, P. &M. J. Blanco. 1996. Evolutionary patterns in ontogenetic transformation: From laws to regularities. Int. J. Developm. Biol. 40: 845–858.Google Scholar
  2. —,S. J. Gould, G. F. Oster &D. B. Wake. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5: 296–317.Google Scholar
  3. Ambros, V. 1997. Heterochronic genes. Pp. 501–518in D. L. Riddle, T. Blumenthal, B. J. Meyer & J. R. Priess (eds.),C. elegans II. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  4. An, G. 1994. Regulatory genes controlling flowering time or floral organ development. Pl. Molec. Biol. 25: 335–337.Google Scholar
  5. Anderson, E. &D. DeWinton. 1985. The geneticsof Primula sinensis. IV. Indications as to the ontogenetic relationship of leaf and inflorescence. Ann. Bot. 49: 671–687.Google Scholar
  6. Asama, K. 1960. Evolution of the leaf forms through the ages explained by the successive retardation and neoteny. Sci. Rep. Tôhoku Imp. Univ., ser. 2, Special vol. 4: 252–280.Google Scholar
  7. Atchley, W. R. 1987. Developmental quantitative genetics and the evolution of ontogenies. Evolution 41:316–330.Google Scholar
  8. —. 1990. Heterochrony and morphological change: A quantitative genetic perspective. Semin. Developm. Biol. 1:289–297.Google Scholar
  9. Axelrod, D. I. 1960. The evolution of flowering plants. Pp. 227–305in S. Tax (ed.), Evolution after Darwin, vol. 1. University of Chicago Press, Chicago.Google Scholar
  10. Bateman, R. M. 1994. Evolutionary-developmental change in the growth architecture of fossil rhizomorphic lycopsids: Scenarios constructed on cladistic foundations. Biol. Rev. 69: 527–597.Google Scholar
  11. — &W. A. DiMichele. 1991.Hizemodendron, gen. nov., a pseudoherbaceous segregate ofLepidodendron (Pennsylvanian): Phylogenetic context for evolutionary changes in lycopsid growth architecture. Syst. Bot. 16: 195–205.Google Scholar
  12. Bertrand-Garcia, R. &M. Freeling. 1991. Hairy-sheath-frayed l-O: a systemic, heterochronic mutant of maize that specifies slow developmental stage transitions. Amer. J. Bot. 78: 747–765.Google Scholar
  13. Blackstone, N. W. 1987a. Allometry and relative growth: Pattern and process in evolutionary studies. Syst. Zool. 36: 76–78.Google Scholar
  14. —. 1987b. Size and time. Syst. Zool. 36: 211–215.Google Scholar
  15. Bolker, J. A. &R. A. Raff. 1996. Developmental genetics and traditional homology. BioEssays 18: 489–494.PubMedGoogle Scholar
  16. Bookstein, F. L., B. C. Chernoff, R. L. Elder, J. M. Humphries, G. R. Smith &R. E. Strauss. 1985. Morphometrics in evolutionary biology. Academy of Natural Sciences of Philadelphia, Philadelphia, PA.Google Scholar
  17. Bowman, J. L., D. R. Smyth &E. M. Meyerowitz. 1989. Genes directing flower development inArabidopsis. Pl. Cell 1:37–52.Google Scholar
  18. —,H. Sakai, T. Jack, D. Weigel, U. Mayer &E. M. Meyerowitz. 1992.SUPERMAN, a regulator of floral homeotic genes inArabidopsis. Development 114: 599–615.PubMedGoogle Scholar
  19. —,J. Alvarez, D. Weigel, E. M. Meyerowitz &D. R. Smyth. 1993. Control of flower development inArabidopsis thaliana byAPETALA1 and interacting genes. Development 119: 721–743.Google Scholar
  20. Carlquist, S. 1969. Toward acceptable evolutionary interpretations of floral anatomy. Phytomorphology: 332–362.Google Scholar
  21. Carlson, S. J. 1991. Development as an evolutionary force. Evolution 45: 1534–1535.Google Scholar
  22. Cheung, M. &R. Sattler. 1967. Early floral development ofLythrum salicaria. Canad. J. Bot. 45: 1609–1618.Google Scholar
  23. Clearwater, M. J. &K. S. Gould. 1993. Comparative leaf development of juvenile and adultPseudopanax crassifolius. Canad. J. Bol. 72: 658–670.Google Scholar
  24. Coen, E. S. 1991. The role of homeotic genes in flower development and evolution. Ann. Rev. Pl. Physiol. & Pl. Molec. Biol. 42: 241–279.Google Scholar
  25. -& J. M. Nugent. 1994. Evolution of flowers and inflorescences. Development Supplement: 107–116.Google Scholar
  26. —,J. M. Romero, S. Doyle, R. Elliott, G. Murphy &R. Carpenter. 1990.Floricaula: A homeotic gene required for flower development inAntirrhinum majus. Cell 63: 1311–1322.PubMedGoogle Scholar
  27. Colasanti, J. &V. Sundaresan. 1996. Control of the transition to flowering. Current Opin. Biotechnol. 7: 145–149.Google Scholar
  28. Conway, L. J. &R. S. Poethig. 1993. Heterochrony in plant development. Semin. Developm. Biol. 4: 65–72.Google Scholar
  29. Coupland, G. 1995. Regulation of flowering time:Arabidopsis as a model system to study genes that promote or delay flowering. Philos. Trans. 350: 27–34.Google Scholar
  30. —,S. Dash, J. Goodrich, K. Lee, D. Long, M. Martin, P. Puangsomlee, J. Putterill, F. Robson, E. Sundberg &K. Wilson. 1993. Molecular and genetic analysis of the control of flowering time in response to day length inArabidopsis thaliana. Flowering Newsletter 16: 27–32.Google Scholar
  31. Crone, W. &E. M. Lord. 1994. Floral organ initiation and development in wild-typeArabidopsis thaliana (Brassicaceae) and in the organ identity mutantsapetala2-1 andagamous-1. Canad. J. Bot. 72:384–401.Google Scholar
  32. Cronquist, A. 1988. The evolution and classification of flowering plants. Ed. 2. The New York Botanical Garden, New York.Google Scholar
  33. Demason, D. A. & P. J. Villani. 1998. Roles of theAf andTl genes in pea leaf development: Homeosis or heterochrony? Amer. J. Bot. Supplement: 3.Google Scholar
  34. Dengler, N. G. 1984. Comparison of leaf development in normal (+/+), entire (e/e), and lanceolate (La/+) plants of tomato,Lycopersicon esculentum ’Ailsa Craig’. Bot. Gaz. 145: 66–77.Google Scholar
  35. —. 1992. Patterns of leaf development in anisophyllous shoots. Canad. J. Bot. 70: 676–691.Google Scholar
  36. Dickinson, T. A. 1978. Epiphylly in angiosperms. Bot. Rev. (Lancaster) 44: 181–232.Google Scholar
  37. — &R. Sattler. 1974. Development of the epiphyllous inflorescence ofPhyllonoma integerrima (Turcz.) Loes.: Implications for comparative morphology. J. Linn. Soc., Bot. 69: 1–13.Google Scholar
  38. Diggle, P. K. 1992. Development and the evolution of plant reproductive characters. Pp. 326–355in R. Wyatt (ed.), Ecology and evolution of plant reproduction: New approaches. Chapman & Hall, New York.Google Scholar
  39. Donoghue, M. J. &M. J. Sanderson. 1994. Complexity and homology in plants. Pp. 393–421in B. K. Hall (ed.), Homology: The hierarchical basis of comparative biology. Academic Press, San Diego, CA.Google Scholar
  40. Douglas, A. W. &S. C. Tucker. 1996. Comparative floral ontogenies among Persoonioideae includingBellendena (Proteaceae). Amer. J. Bot. 83: 1528–1555.Google Scholar
  41. Drews, G. N., D. Weigel &E. M. Meyerowitz. 1991. Floral patterning. Current Opin. Gen. Developm. 1: 174–178.Google Scholar
  42. Duchartre, P. 1844. Observations sur l’organogénie de la fleur et en particulier de l’ovaire chez les plantes à placenta central libre. Ann. Sci. Nat. Paris III 2: 279–297.Google Scholar
  43. Esau, K. 1977. Anatomy of seed plants. John Wiley, New York.Google Scholar
  44. Fink, W. L. 1982. The conceptual relationship between ontogeny and phylogeny. Paleobiology 8: 254–264.Google Scholar
  45. —. 1988. Phylogenetic analysis and the detection of ontogenetic patterns. Pp. 71–91in M. L. McKinney (ed.), Heterochrony in evolution: A multidisciplinary approach. Plenum Press, New York.Google Scholar
  46. Fiorello, C. V. &R. Z. German. 1997. Heterochrony within species: Craniofacial growth in giant, standard, and dwarf rabbits. Evolution 51: 250–261.Google Scholar
  47. Fisher, J. B. 1973. Unusual branch development in the palmChrysalidocarpus. J. Linn. Soc. Bot. 66: 83–95.Google Scholar
  48. Flanagan, C. A. &H. Ma. 1994. Spatially and temporally regulated expression of the MADS-box geneAGL2 in wild-type and mutantArabidopsis flowers. Pl. Molec. Biol. 26: 581–595.Google Scholar
  49. Freeling, M., R. Bertrand-Garcia &N. Sinha. 1992. Maize mutants and variants altering developmental time and their heterochronic interactions. BioEssays 14: 227–236.PubMedGoogle Scholar
  50. Friedman, W. E. &J. S. Carmichael. 1998. Heterochrony and developmental innovation of female gametophyte ontogeny inGnetum, a highly apomorphic seed plant. Evolution 52: 1016–1030.Google Scholar
  51. Gallardo, R., E. Dominguez &J. M. Muñoz. 1993. The heterochronic origin of the cleistogamous flower inAstragalus cymbicarpos (Fabaceae). Amer. J. Bot. 80: 814–823.Google Scholar
  52. Ganders, F. R. 1975. Mating patterns in self-compatible distylous populations ofAmsinckia (Boraginaceae). Canad. J. Bot. 53: 773–779.Google Scholar
  53. —. 1976. Pollen flow in distylous populations ofAmsinckia (Boraginaceae). Canad. J. Bot. 54: 2530–2535.Google Scholar
  54. —. 1979. The biology of heterostyly. New Zealand J. Bot. 17: 607–635.Google Scholar
  55. Gifford, E. M. &A. S. Foster. 1989. Morphology and evolution of vascular plants. Ed. 3. W. H. Freeman, New York.Google Scholar
  56. Gilbert, S. F., J. M. Opitz &R. A. Raff. 1996. Resynthesizing evolutionary and developmental biology. Developm. Biol. 173: 357–372.Google Scholar
  57. Gleissberg, S. &J. W. Kadereit. 1999. Evolution of leaf morphogenesis: Evidence from developmental and phylogenetic data in Papaveraceae. Int. J. Pl. Sci. 160: 787–794.Google Scholar
  58. Goodwin, B. 1989. Morphogenesis, evolution and organic stability. Pp. 187–192in B. David, J. L. Dommergues, J. Chaline & B. Laurin (eds.), Ontogenèse et évolution, Vol. Geobios, mémoire spécial no. 12. Édition de L’Université Claude-Bernard, Lyon.Google Scholar
  59. Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41: 587–640.PubMedGoogle Scholar
  60. —. 1977. Ontogeny and phylogeny. Harvard University Press, Cambridge, MA.Google Scholar
  61. —. 1988. The uses of heterochrony. Pp. 1–13in M. L. McKinney (ed.), Heterochrony in evolution: A multidisciplinary approach. Plenum Press, New York.Google Scholar
  62. —. 1992. Ontogeny and phylogeny: Revisited and reunited. BioEssays 14: 275–279.PubMedGoogle Scholar
  63. Greyson, R. I. 1972. Initiation and early growth of flower organsof Nigella andLycopersicon: Insights from allometry. Bot. Gaz. 133: 184–190.Google Scholar
  64. Guerrant, E. O. 1982. Neotenic evolutionof Delphinium nudicaule (Ranunculaceae): A hummingbirdpollinated larkspur. Evolution 36: 699–712.Google Scholar
  65. -. 1984. The role of ontogeny in the evolution and ecology of selected speciesof Delphinium andLimnanthes. Ph.D. diss., University of California.Google Scholar
  66. —. 1988. Heterochrony in plants: The intersection of evolution, ecology, and ontogeny. Pp. 111–133in M. L. McKinney (ed.), Heterochrony in evolution: A multidisciplinary approch. Plenum Press, New York.Google Scholar
  67. —. 1989. Early maturity, small flowers and autogamy: A developmental connection? Pp. 61–84in J. H. Bock & Y. B. Linhart (eds.), The evolutionary ecology of plants. Westview Press, Boulder, CO.Google Scholar
  68. Gupta, V. K. &G. L. Stebbins. 1969. Peroxidase activity in hooded and awned barley at successive stages of development. Biochem. Gen. 3: 15–24.Google Scholar
  69. Haeckel, E. 1875. Die Gastrula and die Eifurchung der Thiere. Jena Z. Naturwiss 9: 402–508.Google Scholar
  70. —. 1905. The evolution of man. Watts, London.Google Scholar
  71. Hall, B. K. 1990. Heterochrony in vertebrate development. Developm. Biol. 1: 237–243.Google Scholar
  72. —. 1992. Evolutionary developmental biology. Chapman & Hall, New York.Google Scholar
  73. —. 1998. Evolutionary developmental biology. Ed. 2. Chapman & Hall, New York.Google Scholar
  74. —,ed. 1994. Homology: The hierarchical basis of comparative biology. Academic Press, San Diego, CA.Google Scholar
  75. — &T. Miyake. 1995. How do embryos measure time? Pp. 3–19in K. J. McNamara (ed), Evolutionary change and heterochrony. John Wiley, New York.Google Scholar
  76. Harlan, J. R. 1945. Cleistogamy and chasmogamy inBromus carinatus Hook. & Arn. Amer. J. Bot. 32: 66–72.Google Scholar
  77. Haugh, G. W., E. A. Schultz &J. M. Martinez-Zapater. 1995. The regulation of flowering inArabidopsis thaliana: Meristems, morphogenesis, and mutants. Canad. J. Bot. 73: 959–981.Google Scholar
  78. Hill, J. P. 1996. Heterochrony in the anther. Pp. 118–135in W. G. D’Arcy & R. C. Keating (eds.), The anther: Form, function and phylogeny. Cambridge University Press. Cambridge, England.Google Scholar
  79. — &E. M. Lord. 1989. Floral development inArabidopsis thaliana: A comparison of the wild type and the homeotic pistillata mutant. Canad. J. Bot. 67: 2922–2936.Google Scholar
  80. ——. 1990. The role of developmental timing in the evolution of floral form. Semin. Developm. Biol. 1: 281–287.Google Scholar
  81. —— &R. G. Shaw. 1992. Morphological and growth rate differences among outcrossing and self-pollinating races ofArenaria uniflora (Caryophyllaceae). J. Evol. Biol. 5: 559–573.Google Scholar
  82. Jack, T., L. L. Brockman &E. M. Meyerowitz. 1992. The homeotic geneAPETALA3 ofArabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697.PubMedGoogle Scholar
  83. —,L. E. Sieburth &E. M. Meyerowitz. 1993. Genes that control flower development inArabidopsis. Semin. Developm. Biol. 4: 51–63.Google Scholar
  84. —,G. L. Fox &E. M. Meyerowitz. 1994.Arabidopsis homeotic geneAPETALA3 ectopic expression: Transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76: 703–716.PubMedGoogle Scholar
  85. Johnston, M. O. &D. J. Schoen. 1996. Correlated evolution of self-fertilization and inbreeding depression: An experimental study of nine populations ofAmsinckia (Boraginaceae). Evolution 50: 1478–1491.Google Scholar
  86. Jones, C. S.. 1988. Positional influences on leaf development in a wild and cultivatedCucurbita species. Amer. J. Bot. 75: 33.Google Scholar
  87. —. 1992. Comparative ontogeny of a wild cucurbit and its derived cultivar. Evolution 46: 1827–1847.Google Scholar
  88. —. 1993. Heterochrony and heteroblastic leaf development in two subspecies ofCucurbita argyrosperma (Cucurbitaceae). Amer. J. Bot. 80: 778–795.Google Scholar
  89. Jordan, B. R. &R. G. Anthony. 1993. Floral homeotic genes: Isolation, characterization and expression during floral development. Pp. 93–116in B. R. Jordan (ed.), The molecular biology of flowering. CAB International, Wallingford, England.Google Scholar
  90. Kampny, C. M. & E. M. Harris. 1998. Heterochrony: The basis of floral shape evolution. Amer. J. Bot. Supplement: 4.Google Scholar
  91. —,T. A. Dickinson &N. G. Dengler. 1993. Quantitative comparison of floral development inVeronica chamaedrys andVeronicastrum virginicum (Scrophulariaceae). Amer. J. Bot. 80: 449–460.Google Scholar
  92. ———. 1994. Quantitative floral development inPseudolysimachion (Scrophulariaceae): Intraspecific variation and comparison withVeronica andVeronicastrum. Amer. J. Bot. 81: 1343–1353.Google Scholar
  93. Kaplan, D. R. 1970. Comparative foliar histogenesis inAcorus calamus and its bearing on the phyllode theory of monocotyledonous leaves. Amer. J. Bot. 57: 331–361.Google Scholar
  94. —. 1973a. Comparative developmental analysis of the heteroblastic leaf series of axillary shoots ofAcorus calamus L. (Araceae). Cellule 69: 253–290.Google Scholar
  95. —. 1973b. The monocotyledons: Their evolution and comparative biology. VII. The problem of leaf morphology and evolution in the monocotyledons. Quart. Rev. Biol. 48: 437–457.Google Scholar
  96. —. 1980. Heteroblastic leaf development inAcacia: Morphological and morphogenetic implications. Cellule 73: 135–203.Google Scholar
  97. —. 1984. The concept of homology and its central role in the elucidation of plant systematic relation. Pp. 51–70in T. Duncan & T. F. Stuessy (eds.), Cladistics: Perspectives on the reconstruction of evolutionary history. Columbia University Press, New York.Google Scholar
  98. Kellogg, E. A. 1990. Ontogenetic studies of florets inPoa (Gramineae): Allometry and heterochrony. Evolution 44: 1978–1989.Google Scholar
  99. Kirchoff, B. K. 1983. Allometric growth of the flowers in five genera of the Marantaceae and inCanna (Cannaceae). Bot. Gaz. 144: 110–118.Google Scholar
  100. —. 1988. Floral ontogeny and evolution in the ginger group of the Zingiberales. Pp. 45–56in P. Leins, S. C. Tucker & P. K. Endress (eds.), Aspects of floral development. J. Cramer, Berlin.Google Scholar
  101. —. 1991. Homeosis in the flowers of the Zingiberales. Amer. J. Bot. 78: 833–837.Google Scholar
  102. Klingenberg, C. P. 1996. Individual variation of ontogenies: A longitudinal study of growth and timing. Evolution 50: 2412–2428.Google Scholar
  103. —. 1998. Heterochrony and allometry: The analysis of evolutionary change in ontogeny. Biol. Rev. 73: 79–123.PubMedGoogle Scholar
  104. — &J. R. Spence. 1994. Heterochrony and allometry: Lessons from the water strider genusLimnoporus. Evolution 47: 1834–1853.Google Scholar
  105. Kluge, A. G. 1985. Ontogeny and phylogenetic systematics. Cladistics 1: 13–27.Google Scholar
  106. —. 1988. The characterization of ontogeny. Pp. 57–81in C. J. Humphries (ed.), Ontogeny and systematics. Columbia University Press, New York.Google Scholar
  107. Koornneef, M., C. J. Hanhart &J. H. Van der Veen. 1991. A genetic and physiological analysis of late flowering mutants inArabidopsis thaliana. Molec. Gen. Genet. 229: 57–66.PubMedGoogle Scholar
  108. Krol, A. R. v. d. &N.-H. Chua. 1993. Flower development inPetunia. Pl. Cell 5: 1195–1203.Google Scholar
  109. Lammers, T. G. 1990. Sequential paedomorphosis among the endemic Hawaiian Lobelioideae (Campanulaceae). Taxon 39: 206–211.Google Scholar
  110. Langer, R. H. M. &D. Wilson. 1965. Environmental control of cleistogamy in prairie grass (Bromus unioloides HBK). New Phytol. 65: 80–85.Google Scholar
  111. Lee, C. W., H. T. Erickson &J. Janick. 1979. Cleistogamy inSalpiglossis sinuata. Amer. J. Bot. 66: 626–632.Google Scholar
  112. Lee, I., M. J. Aukerman, S. L. Gore, K. N. Lohman, S. D. Michaels, L. M. Weaver, M. C. John, K. A. Feldmann &R. M. Amasino. 1994. Isolation ofLUMINIDEPENDENS: A gene involved in the control of flowering time inArabidopsis. Pl. Cell 6: 75–83.Google Scholar
  113. Lee, M. P. N. 1988. Cell cycle control genes in fission yeast and mammalian cells. Trends Genet. 4: 287–290.PubMedGoogle Scholar
  114. Lehmann, N. L. &R. Sattler. 1996. Staminate floral development inBegonia cucullata var.hookeri and three double-flowering begonia cultivars, examples of homeosis. Canad. J. Bot. 74: 1729–1741.Google Scholar
  115. Li, P. &M. O. Johnston. 1999. Evolution of meiosis timing during floral development. Proc. Roy. Soc. Lond. B266: 185–190.Google Scholar
  116. Lieu, S. M. &R. Sattler. 1976. Leaf development inBegonia hispida Schott var.cucullifera Irmsch. with special reference to vascular organization. Canad. J. Bot. 54: 2108–2121.Google Scholar
  117. Lord, E. M. 1979. The development of cleistogamous and chasmogamous flowers inLamium amplexicaule (Labiatae): An example of heteroblastic inflorescence development. Bot. Gaz. 140: 39–50.Google Scholar
  118. —. 1982. Floral morphogenesis inLamium amplexicaule L. (Labiatae) with a model for the evolution of the cleistogamous flower. Bot. Gaz. 143: 63–72.Google Scholar
  119. — &J. P. Hill. 1987. Evidence for heterochrony in the evolution of plant form. Pp. 47–70in R. A. Raff & E. C. Raff (eds.), Development as an evolutionary process. Alan R. Liss, New York.Google Scholar
  120. —,K. J. Eckard &W. Crone. 1989. Development of the dimorphic anthers inCollomia grandiflora: Evidence for heterochrony in the evolution of the cleistogamous anther. J. Evol. Biol. 2: 81–93.Google Scholar
  121. —,W. Crone &J. P. Hill. 1994. Timing of events during flower organogenesis:Arabidopsis as a model system. Curr. Topics Developm. Biol. 29: 325–356.Google Scholar
  122. MacIntyre, J. P. &C. R. Lacroix. 1996. Comparative development of perianth and androecial primordia of the single flower and the homeotic double-flowered mutant inHibiscus rosa-sinensis (Makvaceae). Canad. J. Bot. 74: 1871–1882.Google Scholar
  123. Maier, U. &R. Sattler. 1977. The structure of the epiphyllous appendagesof Begonia hispida Schott var.cucullifera Irmsch. Canad. J. Bot. 55: 264–280.Google Scholar
  124. Mandel, M. A. &M. F. Yanofsky. 1995. A gene triggering flower formation inArabidopsis. Nature 377: 522–524.PubMedGoogle Scholar
  125. —,J. L. Bowman, S. A. Kempin, H. Ma, E. M. Meyerowitz &M. F. Yanofsky. 1992. Manipulation of flower structure in transgenic tobacco. Cell 71: 133–143.PubMedGoogle Scholar
  126. Martin, C. 1996. Transcription factors and the manipulation of plant traits. Curr. Opin. Biotechnol. 7: 130–138.Google Scholar
  127. Marx, G. A. 1987. A suit of mutants that modify pattern formation in pea leaves. Pl. Mol. Biol. Rep. 5: 311–335.Google Scholar
  128. Mayers, A. M. &E. M. Lord. 1983a. Comparative flower development in the cleistogamous speciesViola odorata. I. A growth rate study. Amer. J. Bot. 70: 1548–1555.Google Scholar
  129. ——. 1983b. Comparative flower development in the cleistogamous speciesViola odorata. II. An organographic study. Amer. J. Bot. 70: 1556–1563.Google Scholar
  130. McKinney, M. L. 1988a. Classifying heterochrony: Allometry, size, and time. Pp. 17–34in M. L. McKinney (ed.), Heterochrony in evolution: A multidisciplinary approach. Plenum Press, New York.Google Scholar
  131. —. 1988b. Heterochrony in evolution: An overview. Pp. 327–340in M. L. McKinney (ed.), Heterochrony in evolution: A multidisciplinary approach. Plenum Press, New York.Google Scholar
  132. —. 1999. Heterochrony: Beyond words. Paleobiology 25: 149–153.Google Scholar
  133. —,ed. 1988. Heterochrony in evolution: A multidisciplinary approach. Plenum Press, New York.Google Scholar
  134. —. &K. J. McNamara. 1991. Heterochrony: The evolution of ontogeny. Plenum Press, New York.Google Scholar
  135. McLellan, T. 1990. Development of differences in leaf shape inBegonia dregei (Begoniaceae). Amer. J. Bot. 77: 323–337.Google Scholar
  136. —. 1993. The roles of heterochrony and heteroblasty in the diversification of leaf shapes inBegonia dregei (Begoniaceae). Amer. J. Bot. 80: 796–804.Google Scholar
  137. — &N. G. Dengler. 1995. Pattern and form in repeated elements in the development of simple leaves ofBegonia dregei. Int. J. Pl. Sci. 156: 581–589.Google Scholar
  138. McNamara, K. J. 1993. Inside evolution: 1992 presidential address. J. Roy. Soc. W. Australia. 76: 3–12.Google Scholar
  139. —,ed. 1995. Evolutionary change and heterochrony. John Wiley, New York.Google Scholar
  140. Merrill, E. K. 1979. Comparison of ontogeny of three types of leaf architecture inSorbus L. (Rosaceae). Bot. Gaz. 140: 328–337.Google Scholar
  141. Minter, T. C. &E. M. Lord. 1983. A comparison of cleistogamous and chasmogamous floral development inCollomia grandiflora Dougl. ex Lindl. (Polemoniaceae). Amer. J. Bot. 70: 1499–1508.Google Scholar
  142. Mosbrugger, V. 1995. Heterochrony and the evolution of land plants. Pp. 93–105in K. J. McNamara (ed.), Evolutionary change and heterochrony. John Wiley, New York.Google Scholar
  143. Murfet, I. C. &J. B. Reid. 1993. Developmental mutants. Pp. 165–216in R. Casey & D. R. Davies (eds.), Peas: Genetics, molecular biology, and biotechnology. CAB International, Wallingford, England.Google Scholar
  144. Niklas, K. J. 1994. Plant allometry: The scaling of form and process. University of Chicago Press, Chicago.Google Scholar
  145. —. 1997. The evolutionary biology of plants. University of Chicago Press, Chicago.Google Scholar
  146. O’Grady, R. T. 1985. Ontogenetic sequences and the phylogenetics of flatworms. Cladistics 1: 159–170.Google Scholar
  147. Parichy, D. M., H. B. Shaffer &M. Mangel. 1992. Heterochrony as a unifying theme in evolution and development. Evolution 46: 1252–1254.Google Scholar
  148. Perrier de la Bathie, H. 1946. Celastracées.In H. Humbert (ed.), Flore de Madagascar et des Comores. Impr. Officielle, Tananarive, Madagascar.Google Scholar
  149. Philipson, W. R. 1971. Shoot differentiation in the Araliaceae of New Zealand. J. Indian Bot. Soc. 50A: 188–195.Google Scholar
  150. Poethig, R. S. 1988. Heterochronic mutations affecting shoot development in maize. Genetics 119: 959–973.PubMedGoogle Scholar
  151. Posluszny, U., R. Sattler, J. P. Hill, M. K. Komaki, J. M. Gerrath, N. Lehmann &B. K. Kirchoff. 1990. Homeosis and the evolution of plants. Pp. 447–454in E. C. Dudley (ed.), Proceedings of the Fourth International Congress of Systematic and Evolutionary Biology, vol. 1. Dioscorides Press, University of Maryland, College Park.Google Scholar
  152. Purugganan, M. D. 1996. Evolution of development: Molecules, mechanisms and phylogenetics. TREE 11: 5–7.Google Scholar
  153. —,S. D. Rounsley, R. J. Schmidt &M. F. Yanofsky. 1995. Molecular evolution of flower development: Diversification of the plant MADS-box regulatory gene family. Genetics 140: 345–356.PubMedGoogle Scholar
  154. Raff, R. A. 1996. The shape of life: Genes, development, and the evolution of animal form. University of Chicago Press, Chicago.Google Scholar
  155. — &T. C. Kaufman. 1983. Embryos, genes, and evolution. Macmillan, New York.Google Scholar
  156. — &G. A. Wray. 1989. Heterochrony: Developmental mechanisms and evolutionary results. J. Evol. Biol. 2: 409–434.Google Scholar
  157. — &E. C. Raff, eds. 1987. Development as an evolutionary process. Alan R. Liss, New York.Google Scholar
  158. Ray, P. M. &H. F. Chisaki. 1957a. Studies onAmsinckia. II. Relationships among the primitive species. Amer. J. Bot. 44: 537–544.Google Scholar
  159. ——. 1957b. Studies onAmsinckia. I. A synopsis of the genus, with a study of heterostyly in it. Amer. J. Bot. 44: 529–536.Google Scholar
  160. Reilly, S. M. 1997. An integrative approach to heterochrony: The distinction between interspecific and intraspecific phenomena. Biol. J. Linn. Soc. 60: 119–143.Google Scholar
  161. Rice, S. H. 1997. The analysis of ontogenetic trajectories: When a change in size or shape is not heterochrony. Proc. Natl. Acad. Sci. USA 94: 907–912.PubMedGoogle Scholar
  162. Richards, J. H. 1983. Heteroblastic development in the water hyacinthEichhornia crassipes Solms. Bot. Gaz. 144: 247–259.Google Scholar
  163. Richardson, M. K. 1995. Heterochrony and the phylotypic period. Developm. Biol. 172: 412–421.Google Scholar
  164. Runions, C. J. & M. A. Geber. 1998. A heterochronic shift leading to self-pollination inClarkia xantiana ssp. parviflora (Onagraceae). Amer. J. Bot. Supplement: 18.Google Scholar
  165. Saedler, H. &P. Huijser. 1993. Molecular biology of flower development inAntirrhinum majus (snapdragon). Gene 135: 239–243.PubMedGoogle Scholar
  166. Sattler, R. 1962. Zur frühen Infloreszenz- und Blütenentwicklung der Primulales sensu lato mit besonderer Berücksichtigung der Stamen-Petalum Entwicklung. Botan. Jahrb. 81: 358–396.Google Scholar
  167. —. 1988. Homeosis in plants. Amer. J. Bot. 75: 1606–1617.Google Scholar
  168. —. 1992. Process morphology: Structural dynamics in development and evolution. Canad. J. Bot. 70: 708–714.Google Scholar
  169. —. 1994. Homology, homeosis, and process morphology in plants. Pp. 423–475in B. K. Hall (ed.), Homology: The hierarchical basis of comparative biology. Academic Press, San Diego, CA.Google Scholar
  170. — &U. Maier. 1977. Development of the epiphyllous appendages ofBegonia hispida Schott var.cucullifera Irmsch.: Implications for comparative morphology. Canad. J. Bot. 55: 411–425.Google Scholar
  171. Schneeberger, R. G., P. W. Becraft, S. Hake &M. Freeling. 1995. Ectopic expression of the knox homeo box gene rough sheath 1 alters cell fate in the maize leaf. Genes Developm. 9: 2292–2304.Google Scholar
  172. Schoen, D. J., M. O. Johnston, A. M. L’Heureux &J. V. Marsolais. 1997. Evolutionary history of the mating system inAmsinckia (Boraginaceae). Evolution 51: 1090–1099.Google Scholar
  173. Schultz, E. A. &G. W. Haughn. 1991.LEAFY, a homeotic gene that regulates inflorescence development inArabidopsis. Pl. Cell 3: 771–781.Google Scholar
  174. ——. 1993. Genetic analysis of the floral initiation process (FLIP) inArabidopsis. Development 119: 745–765.Google Scholar
  175. Schwarz-Sommer, Z., P. Huijser, W. Nacken, H. Saedler &H. Sommer. 1990. Genetic control of flower development by homeotic genes inAntirrhinum majus. Science 250: 931–936.PubMedGoogle Scholar
  176. Sinha, N., S. Hake &M. Freeling. 1993. Genetic and molecular analysis of leaf development. Curr. Topics Developm. Biol. 28: 47–80.Google Scholar
  177. Slatkin, M. 1987. Quantitative genetics of heterochrony. Evolution 41: 799–811.Google Scholar
  178. Smith-Huerta, N. L. 1984. Development of flower form in an allotetraploidClarkia and its parental diploid species. Amer. J. Bot. 71: 720–726.Google Scholar
  179. Solbrig, O. T. &R. C. Rollons. 1977. The evolution of autogamy in species of the mustard genusLeavenworthia. Evolution 31: 265–281.Google Scholar
  180. Stebbins, G. L. 1992. Comparative aspects of plant morphogenesis: A cellular, molecular, and evolutionary approach. Amer. J. Bot. 79: 589–598.Google Scholar
  181. Sundberg, M. D. 1982. Petal-stamen initiation in the genusCyclamen (Primulaceae). Amer. J. Bot. 69: 1707–1709.Google Scholar
  182. Sung, Z. R., A. Belachew, S. Bai &R. Bertrand-Garcia. 1992.EMF, anArabidopsis gene required for vegetative shoot development. Science 258: 1645–1647.PubMedGoogle Scholar
  183. Takahashi, H. 1994. A comparative study of floral development inTrillium apetalon andT. kamtschaticum (Liliaceae). J. Pl. Res. 107: 237–243.Google Scholar
  184. Takhtajan, A. 1954. Voprosy Evolyutsionnoy Morfologii Rasteniy. Leningrad University, Leningrad.Google Scholar
  185. —. 1976. Neoteny and the origin of flowering plants. Pp. 207–219in C. B. Beck (ed.), Origin and early evolution of angiosperms. Columbia University Press, New York.Google Scholar
  186. —. 1991. Evolutionary trends in flowering plants. Columbia University, New York.Google Scholar
  187. Tucker, S. C. 1984. Origin of symmetry in flowers. Pp. 351–394in R. A. White & W. C. Dickison (eds.), Contemporary problems in plant anatomy. Academic Press, London.Google Scholar
  188. —. 1987. Floral initiation and development in legumes. Pp. 183–239in C. H. Stirtion (ed.), Advances in legume systematics, part 3. Royal Botanic Gardens, Kew.Google Scholar
  189. —. 1988. Heteromorphic flower development inNeptunia pubescens, a mimosoid legume. Amer. J. Bot. 75: 205–224.Google Scholar
  190. Veit, B., R. J. Schmidt, S. Hake &M. F. Yanofsky. 1993. Maize floral development: New genes and old mutants. Pl. Cell 5: 1205–1215.Google Scholar
  191. Weigel, D. 1995. The genetics of flower development: From floral induction to ovule morphogenesis. Annual Rev. Genet. 29: 19–39.Google Scholar
  192. — &E. M. Meyerowitz. 1993. Genetic hierarchy controlling flower development. Pp. 93–107in M. Bernfeld (ed.), Molecular basis of morphogenesis. Wiley-Liss, New York.Google Scholar
  193. ——. 1994. The ABCs of floral homeotic genes. Cell 78: 203–209.PubMedGoogle Scholar
  194. — &O. Nilsson. 1995. A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495–500.PubMedGoogle Scholar
  195. —,J. Alvarez, D. R. Smyth, M. F. Yanofsky &E. M. Meyerowitz. 1992.LEAFY controls floral meristem identity inArabidopsis. Cell 69: 843–859.PubMedGoogle Scholar
  196. Whaley, W. G. &C. Y. Whaley. 1942. A developmental analysis of inherited leaf patterns inTropaeolum. Amer. J. Bot. 29: 195–200.Google Scholar
  197. Wiltshire, R. J. E., I. C. Murfet &J. B. Reid. 1994. The genetic control of heterochrony: Evidence from developmental mutants ofPisum sativum L. J. Evol. Biol. 7: 447–465.Google Scholar
  198. Wyatt, R. 1983. Pollinator-plant interactions and the evolution of breeding systems. Pp. 51–95in L. Real (ed.), Pollination biology. Academic Press, New York.Google Scholar
  199. Yang, C.-H., L.-J. Chen &Z. R. Sung. 1995. Genetic regulation of shoot development in ArabidopsisL role of the EMF genes. Dev. Biol. 169: 421–435.PubMedGoogle Scholar
  200. Young, J. P., T. A. Dickinson &N. G. Dengler. 1995. A morphometric analysis of heterophyllous leaf development inRanunculus flabellaris. Int. J. Pl. Sci. 156: 590–602.Google Scholar
  201. Zagotta, M. T., S. Shannon &C. Jacobs. 1992. Early-flowering mutants ofArabidopsis thaliana. Aust. J. Pl. Physiol. 19:411–418.Google Scholar
  202. Zelditch, M. L. &W. L. Fink. 1996. Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiology 22: 241–254.Google Scholar
  203. Zimmermann, W. 1959. Die Phylogenie der Pflanzen. Ed. 2. G. Fischer, Stuttgart.Google Scholar
  204. Zopfi, H.-J. 1995. Life history variation and infraspecific heterochrony inRhinanthus glacialis (Scrophulariaceae). Pl. Syst. Evol. 198: 209–233.Google Scholar

Copyright information

© The New York Botanical Garden 2000

Authors and Affiliations

  • Ping Li
    • 1
  • Mark O. Johnston
    • 1
  1. 1.Department of Biology Life Sciences CentreDalhousie UniversityHalifaxCanada

Personalised recommendations