The Botanical Review

, Volume 59, Issue 2, pp 112–152

Dichogamy in angiosperms

  • Robert I. Bertin
  • Christian M. Newman
Article

Abstract

We obtained information on dichogamy and other aspects of the biology of over 4200 species of angiosperms from several hundred published and unpublished sources. We used this information to describe patterns of occurrence of dichogamy and to test specific hypotheses relating dichogamy to other characteristics of plants or their environments.

Protandry was more common than protogyny at the intrafloral level, but the reverse was true at the interfloral level. Patterns of dichogamy varied significantly among major taxa, with protogyny more common among monocotyledons and primitive dicotyledons, and protandry expecially common in the Asteridae. Arctic species tended to be less dichogamous and more protogynous than temperate and tropical species. Aquatic and alpine species were especially protogynous. Patterns of dichogamy varied among sexual systems, with gynomonoecious and gynodioecious species especially protandrous, and monoecious species highly protogynous. Autogamous and self-compatible species were disproportionately protogynous. Flowers of intraflorally dichogamous species were slightly larger than those of adichogamous species, owing to the presence of many autogamous species in the latter group. Species with interfloral protogyny bore much smaller flowers than did species with interfloral protandry. Early-blooming species in north-temperate and polar regions were disproportionately protogynous. Sexual structures that abscised, shriveled or moved after completion of their function tended to be presented first, and those that facilitated the other sexual function were presented second. A negative association existed between type of intrafloral and interfloral dichogamy in diclinous species. Most animal-pollinated flowers were protandrous, except beetle-pollinated and refuge and trap blossoms. Wind pollination was markedly associated with protogyny. Vertical inflorescences visited by upwardly-moving vectors were protandrous.

Our results suggest that three primary factors may be involved in promoting dichogamy: selection for avoidance of pollen-pistil interference, selection for avoidance of self-fertilization, and selection for synchrony of pollen discharge and stigma receptivity in the different flower types of diclinous species. In contrast to many earlier workers we reject the thesis that avoidance of self-fertilization is the universal or even the most important force in the evolution of most forms of dichogamy.

We attribute the prevalence of intrafloral protandry to selection for avoiding interference between pollen export and pollen receipt. Intrafloral protogyny was associated with imprecise pollen transfer, where other means of avoiding pollen-pistil interference (e.g., herkogamy) are likely to be of limited value. The prevalence of interfloral protogyny seems to reflect the smaller size of unisexual flowers than bisexual flowers, the absence of intrafloral pollen-pistil interference in diclinous species, and selection for synchrony of pollen discharge from one flower type with stigma receptivity in the other.

Résumé

Les informations obtenues sur la dichogamie et les autres aspects de la biologie de plus 4200 espèces d’angiosperme proviennent de plusieurs centaines de sources publiées ou non. Nous nous sommes servis de ces informations pour décrire les modes d’apparition de la dichogamie et pour mettre à l’essai des hypothèses spécifiques mettant en relation la dichogamie avec d’autres caractéristiques des plantes et leur environnement.

Au niveau intrafloral la protandrie s’est révélée être plus fréquente que la protogynie, mais le contraire s’est vérifié au niveau interfloral. Les formes de la dichogamie diffèrent de façon significative parmi les principaux taxons avec la protogynie plus fréquente chez les monocotylédones et les dicotylédones primitives, de même que la protandrie plus particulièrement fréquente chez les Asteridae. Nous avons remarqué chez les espèces arctiques une tendance à être plus protogyniques et moins dichogames que les espèces tropicales. Les espèces alpines et aquatiques étaient particulièrement protogyniques. Les formes de la dichogamie changeaient selon le système sexué: les espèces gynomonéciques et gynodiéciques étaient particulièrement protandres tandis que les espèces monéciques étaient grandement protogyniques. Les espèces autogamiques et auto-compatibles étaient protogyniques de façon disproportionnée. Les fleurs des espèces dichogames étaient sensiblement plus grandes que celles des espèces adichogamiques en raison de la présence de nombreuses espèces autogamiques précédemment citées. Les espèces avec une protogynie interflorale portaient des fleurs nettement plus petites par rapport aux espèces à protandrie interflorale. Les espèces à floraison précoce des régions nord-tempéré et polaire étaient protogyniques de façon disproportionnée. Les structures sexuées qui se détachaient, se flétrissaient ou changeaient de place après accomplissement de leur fonction, se présentaient habituellement en premier tandis que celles qui facilitaient l’autre fonction sexuelle se présentaient en seconde position. Dans les espèces diclines il existait une association négative entre la dichogamie de type intrafloral et celle de type interfloral. La plupart des fleurs pollinisées par les animaux étaient protandres excepté celles fécondées par des coléoptères ou celles servant de refuge ou de piège pour insectes. La pollinisation par le vent était associée de façon marquée à la protogynie. Les inflorescences verticales visitées par des vecteurs ascendants étaient protandres.

Les résultats obtenus suggèrent que trois facteurs de base puissent être impliqués pour mettre en évidence la dichogamie: sélection afin d’éviter l’interférence entre le pollen et le pistil, sélection afin d’éviter l’autofécondation et enfin sélection en faveur d’une synchronie entre le dépôt du pollen et la réception des stigmates dans les différents types de fleurs d’espèces diclines. Contrairement à de nombreux chercheurs qui ont travaillé auparavant sur ce même sujet, nous rejetons la thèse que le fait d’éviter l’autofécondation soit l’importance de poids dans l’évolution de la plupart des formes de la dichogamie.

Nous attribuons la prédominance de la protandrie intraflorale à la sélection d’une non-interférence entre l’exportation et la réception du pollen. La protogynie intraflorale était associée à un transport de pollen imprécis alors que d’autres moyens de non-interférence entre le pollen et le pistil (par example l’erkogamie) avaient de fortes chances d’être de valeur limitée. La prédominance de la protogynie interflorale semble refléter la plus petite taille des fleurs unisexuées par rapport à celle des fleurs bisexuées, l’absence d’une interférence intraflorale pollen-pistil dans les espèces diclines, et la sélection d’une synchronie du dépôt de pollen à partir d’un type de fleurs avec réception de stigmates dans l’autre type de fleurs existant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Al-Shehbaz, I. A. 1977. Protogyny in the Cruciferae. Syst. Bot.2: 327–333.CrossRefGoogle Scholar
  2. Barrett, S. C. H. &D. E. Glover. 1985. On the Darwinian hypothesis of the adaptive significance of tristyly. Evolution39: 766–774.CrossRefGoogle Scholar
  3. Bawa, K. S. &J. H. Beach. 1981. Evolution of sexual systems in flowering plants. Ann. Missouri Bot. Gard.68: 254–274.CrossRefGoogle Scholar
  4. Behrens, W. J. 1885. Text-book of general botany. Young J. Pentland, Edinburgh.Google Scholar
  5. Bell, C. R. 1971. Breeding systems and floral biology of the Umbelliferae. Pages 93–107in V. H. Heywood (ed.), The biology and chemistry of the Umbelliferae. Academic Press, New York.Google Scholar
  6. Bennett, A. W. 1870. Observations on protandry and protogyny in British plants. J. Bot.8: 315–321.Google Scholar
  7. Bernhardt, P. &L. B. Thien. 1987. Self-isolation and insect pollination in the primitive angiosperms: New evaluations of older hypotheses. P1. Syst. Evol.156: 159–176.CrossRefGoogle Scholar
  8. Bertin, R. I. 1993. Incidence of monoecy and dichogamy in relation to self-fertilization in angiosperms. Amer. J. Bot. 80 (in press).Google Scholar
  9. — &M. Sullivan. 1988. Pollen interference and cryptic self-fertility inCampsis radicans. Amer. J. Bot.75: 1140–1147.CrossRefGoogle Scholar
  10. Best, L. S. &P. Bierzychudek. 1982. Pollinator foraging on foxglove (Digitalis purpurea): A test of a new model. Evolution36: 70–79.CrossRefGoogle Scholar
  11. Brantjes, N. B. M. 1982. Pollen placement and reproductive isolation between two BrazilianPolygala species (Polygalaceae). PL Syst. Evol.141: 21–52.CrossRefGoogle Scholar
  12. Broyles, S. B. &R. Wyatt. 1993. The consequences of self-pollination inAsclepias exaltala, a self-incompatible milkweed. Amer. J. Bot.80: 41–44.CrossRefGoogle Scholar
  13. Burtt, B. L. 1977. Aspects of diversification in the capitulum. Pages 41–59in V. H. Heywood, J. B. Harborne & B. L. Turner (eds.), The biology and chemistry of the Compositae. Vol. 1. Academic Press, London.Google Scholar
  14. Carlquist, S. 1976. Tribal interrelationships and phylogeny of the Asteraceae. Aliso8: 465–492.Google Scholar
  15. Catling, P. M. 1983. Pollination of northeastern North AmericanSpiranthes (Orchidaceae). Canad. J. Bot.61: 1080–1093.CrossRefGoogle Scholar
  16. Clutton-Brock, T. H. &P. H. Harvey. 1984. Comparative approaches to investigating adaptation. Pages 7–29in J. R. Krebs & N. B. Davies (eds.), Behavioural ecology, an evolutionary approach. Sinauer Associates, Sunderland.Google Scholar
  17. Corbet, S. A., I. Cuthill, M. Fallows, T. Harrison &G. Hartley. 1981. Why do nectar-foraging bees and wasps work upwards on inflorescences? Oecologia51: 79–83.CrossRefGoogle Scholar
  18. Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.Google Scholar
  19. Cruden, R. W. 1977. Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution31: 32–46.CrossRefGoogle Scholar
  20. —. 1988. Temporal dioecism: Systematic breadth, associated traits, and temporal patterns. Bot. Gaz.149: 1–15.CrossRefGoogle Scholar
  21. — &S. M. Hermann-Parker. 1977. Temporal dioecism: An alternative to dioecism? Evolution31: 863–866.CrossRefGoogle Scholar
  22. Dafni, A. 1984. Mimicry and deception in pollination. Ann. Rev. Syst. Ecol.15: 259–278.CrossRefGoogle Scholar
  23. Darwin, C. 1862. On various contrivances by which British and foreign orchids are fertilised by insects. Murray, London.Google Scholar
  24. —. 1876. The effects of cross and self fertilisation in the vegetable kingdom. Murray, London.Google Scholar
  25. —. 1888. The different forms of flower on plants of the same species. John Murray, London.Google Scholar
  26. Donoghue, M. J. 1989. Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution43: 1137–1156.CrossRefGoogle Scholar
  27. Faegri, K. &L. van der Pijl. 1979. The principles of pollination ecology. Pergamon, Oxford.Google Scholar
  28. Felsenstein, J. 1985. Phylogenies and the comparative method. Amer. Naturalist125: 1–15.CrossRefGoogle Scholar
  29. Godley, E. J. 1955. Monoecy and incompatibility. Nature176: 1176–1177.CrossRefGoogle Scholar
  30. Gottsberger, G. 1977. Some aspects of beetle pollination in the evolution of flowering plants. P1. Syst. Evol. Suppl.1: 211–226.Google Scholar
  31. Gray, A. 1879. Gray’s botanical textbook. Vol. 1. Structural botany. Amer. Book Co., New York.Google Scholar
  32. Henslow, G. 1888. The origin of floral structures through insect and other agencies. Kegan, Paul and Trench, London.Google Scholar
  33. Ingram, R. &L. Taylor. 1982. The genetic control of a non-radiate condition inSenecio squalidus L. and some observations on the role of ray florets in the Compositae. New Phytol.91: 749–756.CrossRefGoogle Scholar
  34. Jones, S. G. 1939. Introduction to the floral mechanism. Chemical Publ. Co., New York.Google Scholar
  35. Kernervon Marilaun,A. 1895. The natural history of plants. Vol. 2. Blackie, London.Google Scholar
  36. Knuth, P. 1906-1909. Handbook of flower pollination (English translation). 3 volumes. Clarendon Press, Oxford.Google Scholar
  37. Kohn, J. R. &S. C. H. Barrett. 1992. Floral manipulations reveal the cause of male fitness variation in experimental populations ofEichhornia paniculata (Pontederiaceae). Funct. Ecol.6: 590–595.CrossRefGoogle Scholar
  38. Kölreuter, J. G. 1761. Vorläufige Nachricht von einigen das Geschlecht der Pflanzen betreffenden Versuchen und Beobachtungen. Leipzig.Google Scholar
  39. Lindsey, A. H. 1982. Floral phenology patterns and breeding systems inThaspium andZizia (Apiaceae). Syst. Bot.7: 1–12.CrossRefGoogle Scholar
  40. Lloyd, D. G. &C. J. Webb. 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms. 1. Dichogamy. New Zealand J. Bot.24: 135–162.Google Scholar
  41. — &C. J. Webb &J. M. A. Yates. 1982. Intrasexual selection and the segregation of pollen and stigmas in hermaphrodite plants, exemplified byWahlenbergia albomarginata (Campanulaceae). Evolution36: 903–913.CrossRefGoogle Scholar
  42. Lovett Doust, J. 1980. Floral sex ratios in andromonoecious Umbelliferae. New Phytol.85: 265–273.CrossRefGoogle Scholar
  43. Mabberley, D. J. 1987. The plant-book. Cambridge Univ. Press, Cambridge.Google Scholar
  44. Mosquin, T. &E. H. Martin. 1967. Observations on the pollination biology of plants of Mellville Island, N.W.T., Canada. Canad. Field-Naturalist81: 201–205.Google Scholar
  45. Müller, H. 1883. The fertilisation of flowers. MacMillan, London.Google Scholar
  46. Ockendon, D. J. &L. Currah. 1977. Self-pollen reduces the number of cross-pollen tubes in the styles ofBrassica oleracaea L. New Phytol.78: 675–680.CrossRefGoogle Scholar
  47. Ornduff, R. 1969. Reproductive biology in relation to systematics. Taxon18: 121–133.CrossRefGoogle Scholar
  48. Palmer, M., J. Travis &J. Antonovics. 1989. Temporal mechanisms influencing gender expression and pollen flow within a self-incompatible perennial,Amianthium muscaetoxicum (Liliaceae). Oecologia78: 231–236.CrossRefGoogle Scholar
  49. Pellmyr, O. 1987. Multiple sex expressions inCimicifuga simplex: Dichogamy destabilizes hermaphroditism. Biol. J. Linn. Soc.31: 161–174.CrossRefGoogle Scholar
  50. Percival, M. 1965. Floral biology. Pergamon Press, Oxford.Google Scholar
  51. Philipp, M. 1985. Reproductive biology ofGeranium sessiliflorum 1. Flower and flowering biology. New Zealand J. Bot.23: 567–580.Google Scholar
  52. Pijl, L. van der. 1978. Reproductive integration and sexual disharmony in floral functions. Pages 79–88in A. J. Richards (ed.), The pollination of flowers by insects. Linn. Soc. Symp. Ser. No. 6.Google Scholar
  53. Pistolesi, G., F. Cecconi, S. Baroncelli &M. Rocca. 1986. Stressing sunflower (Helianthus annuus L.) plants as a method for speeding breeding techniques. Z. Pflanzenzucht.96: 90–93.Google Scholar
  54. Ponomarev, A. N. 1960. Concerning proterandry in Umbelliferae. Dokl. Akad. Nauk. S.S.S.R.135: 750–752. (translation)Google Scholar
  55. Proctor, M. &P. Yeo. 1972. The pollination of flowers. Taplinger, New York.Google Scholar
  56. Pyke, G. H. 1978. Optimal foraging in bumblebees and coevolution with their plants. Oecologia36: 281–293.CrossRefGoogle Scholar
  57. Richards, A. J. 1986. Plant breeding systems. Allen and Unwin, London.Google Scholar
  58. Schemske, D. W., M. F. Willson, M. N. Melampy, L. J. Miller, L. Verner, K. M. Schemske &L. B. Best. 1978. Flowering ecology of some spring woodland herbs. Ecology59: 351–366.CrossRefGoogle Scholar
  59. Schlessman, M. A. 1978. Systematics and reproductive biology ofLomatium farinosum (Geyer ex Hooker) Coulter & Rose (Umbelliferae). Madroño25: 1–9.Google Scholar
  60. —. 1982. Expression of andromonoecy and pollination of tuberous lomatiums (Umbelliferae). Syst. Bot.7: 134–149.CrossRefGoogle Scholar
  61. —,P. P. Lowry, II &D. G. Lloyd. 1990. Functional dioecism in the New Caledonian endemicPolyscias pancheri (Araliaceae). Biotropica22: 133–139.CrossRefGoogle Scholar
  62. Schoen, D. J. 1977. Morphological, phenological, and pollen-distribution evidence of autogamy and xenogamy inGilia achilleifolia (Polemoniaceae). Syst. Bot.2: 280–286.CrossRefGoogle Scholar
  63. Shore, J. S. &S. C. H. Barrett. 1984. The effect of pollination intensity and incompatible pollen on seed set inTurnera ulmifolia (Turneraceae). Canad. J. Bot.62: 1298–1303.CrossRefGoogle Scholar
  64. Silvertown, J. 1987. The evolution of hermaphroditism: An experimental test of the resource model. Oecologia72: 157–159.CrossRefGoogle Scholar
  65. Stout, A. B. 1928. Dichogamy in flowering plants. Bull. Torrey Bot. Club55: 141–153.CrossRefGoogle Scholar
  66. Thomson, G. M. 1881. On the fertilization, etc., of New Zealand flowering plants. Trans. Proc. New Zealand Inst.13: 241–291.Google Scholar
  67. Webb, C. J. 1981. Andromonoecism, protandry, and sexual selection in Umbelliferae. New Zealand J. Bot.19: 335–338.Google Scholar
  68. — &D. G. Lloyd. 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms. II. Herkogamy. New Zealand J. Bot.24: 163–178.Google Scholar
  69. Willemstein, S. C. 1987. An evolutionary basis for pollination ecology. Leiden Botanical Series Vol. 10, E. J. Brill, Leiden.Google Scholar
  70. Wilson, A. S. 1878. On the association of an inconspicuous corolla with proterogynous dichogamy in insect-fertilised flowers. Nature18: 508–509.CrossRefGoogle Scholar
  71. Wyatt, R. 1983. Plant-pollinator interactions and the evolution of breeding systems. Pages 51–95in L. Real (ed.), Pollination biology. Academic Press, Orlando.Google Scholar
  72. —. 1984. The evolution of self-pollination in granite outcrop species ofArenaria (Caryophyllaceae). Morphological correlates. Evolution38: 804–816.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1993

Authors and Affiliations

  • Robert I. Bertin
    • 1
  • Christian M. Newman
    • 1
  1. 1.Department of BiologyCollege of the Holy CrossWorcesterUSA

Personalised recommendations