Advertisement

The Botanical Review

, Volume 60, Issue 2, pp 149–181 | Cite as

Effects of cobalt on plants

  • Syamasri Palit
  • Archana Sharma
  • Geeta Talukder
Article

Abstract

Cobalt, a transition element, is an essential component of several enzymes and co-enzymes. It has been shown to affect growth and metabolism of plants, in different degrees, depending on the concentration and status of cobalt in rhizosphere and soil. Cobalt interacts with other elements to form complexes. The cytotoxic and phytotoxic activities of cobalt and its compounds depend on the physico-chemical properties of these complexes, including their electronic structure, ion parameters (charge-size relations) and coordination. Thus, the competitive absorption and mutual activation of associated metals influence the action of cobalt on various phytochemical reactions.

The distribution of cobalt in plants is entirely species-dependent. The uptake is controlled by different mechanisms in different species. Biosorption involves ion-exchange mechanism in algae, but in fungi both metabolism-independent and -dependent processes are operative. Physical conditions like salinity, temperature, pH of the medium, and presence of other metals influence the process of uptake and accumulation in algae, fungi, and mosses.

Toxic concentrations inhibit active ion transport. In higher plants, absorption of Co2+ by roots involves active transport. Transport through the cortical cells is operated by both passive diffusion and active process. In the xylem, the metal is mainly transported by the transpirational flow. Distribution through the sieve tubes is acropetal by complexing with organic compounds. The lower mobility of Co2+ in plants restricts its transport to leaves from stems.

Cobalt is not found at the active site of any respiratory chain enzymes. Two sites of action of Co2+ are found in mitochondrial respiration since it induces different responses toward different substrates like α-keto glutarate and succinate. In lower organisms, Co2+ inhibits tetraphyrrole biosynthesis, but in higher plants it probably participates in chlorophyll b formation. Exogenously added metal causes morphological damage in plastids and changes in the chlorophyll contents. It also inhibits starch grain differentiation and alters the structure and number of chloroplasts per unit area of leaf. The role of cobalt in photosynthesis is controversial. Its toxic effect takes place by inhibition of PS2 activity and hence Hill reaction. It inhibits either the reaction centre or component of PS2 acceptor by modifying secondary quinone electron acceptor Qb site. Co2+ reduces the export of photoassimilates and dark fixation of CO2. In C4 and CAM plants, it hinders fixation of CO2 by inhibiting the activity of enzymes involved.

Cobalt acts as a preprophase poison and thus retards the process of karyokinesis and cytokinesis. The action of cobalt on plant cells is mainly turbagenic. Cobalt compounds act on the mitotic spindle, leading to the formation of chromatin bridges, fragmentation, and sticky bridges at anaphase and binucleate cells. High concentrations of cobalt hamper RNA synthesis, and decrease the amounts of the DNA and RNA probably by modifying the activity of a large number of endo- and exonucleases.

The mutagenic action of cobalt salts results in mitochondrial respiratory deficiency in yeasts. In cytokinesis-deficient mutant of Chlamydomonas it increases the amount of sulfhydryl compounds. Cobalt has been shown to alter the sex of plants like Cannabis sativa, Lemna acquinoclatis, and melon cultivars. It decreases the photoreversible absorbance of phytochrome in pea epicotyl and interferes with heme biosynthesis in fungi.

Low concentration of Co2+ in medium stimulates growth from simple algae to complex higher plants. Relatively higher concentrations are toxic. A similar relationship is seen with crop yield when the metal is used in the form of fertilizer, pre-seeding, and pre-sowing chemicals.

Toxic effect of cobalt on morphology include leaf fall, inhibition of greening, discolored veins, premature leaf closure, and reduced shoot weight.

Being a component of vitamin B12 and cobamide coenzyme, Co2+ helps in the fixation of molecular nitrogen in root nodules of leguminous plants. But in cyanobacteria, CoCl2 inhibits the formation of heterocyst, ammonia uptake, and nitrate reductase activity.

The interaction of cobalt with other metals mainly depends on the concentration of the metals used. For example, high levels of Co2+ induce iron deficiency in plants and suppress uptake of Cd by roots. It also interacts synergistically with Zn, Cr, and Sn. Ni overcomes the inhibitory effect of cobalt on protonemal growth of moss, thus indicating an antagonistic relationship.

The beneficial effects of cobalt include retardation of senescence of leaf, increase in drought resistance in seeds, regulation of alkaloid accumulation in medicinal plants, and inhibition of ethylene biosynthesis.

In lower plants, cobalt tolerance involves a cotolerance mechanism. The mechanism of resistance to toxic concentration of cobalt may be due to intracellular detoxification rather than defective transport. In higher plants, only a few advanced copper-tolerant families showed cotolerance to Co2+. Tolerance toward Co2+ may sometimes determine the taxonomic shifting of several members of Nyssaceae. Due to the high cobalt content in serpentine soil, essential element uptake by plants is reduced, a phenomenon known as “serpentine problem,” for New Caledonian families like Flacourtiaceae. Large amounts of calcium in soil may compensate for the toxic effects of heavy metals in adaptable genera grown in this type of soil.

The biomagnification of potentially toxic elements, such as cobalt from coal ash or water into food webs, needs additional study for effective biological filtering.

Keywords

Cobalt Serpentine Botanical Review Nitrate Reductase Activity Cobalt Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Le cobalt, élément de transition, est un composant essentiel de plusieurs enzymes et co-enzymes. Il est prouvé qu’il peut modifier la croissance et le métabolisme des végétaux, à des degrés variables, selon la concentration et la condition du cobalt dans la rhizosphère et le sol. Le cobalt réagit sur d’autres éléments pour former d’autres complexes. Les activités cytotoxique et phytotoxique du cobalt et de ses composés dépendent des propriétés physico-chimiques de ces complexes, y compris de leur strucuture électronique, de leurs paramètres d’ion (relations charge-taille) et de leur coordination. Ainsi, l’absorption compétitrice et l’activation mutuelle des métaux associés influencent l’action du cobalt dans diverses réactions phytochimiques.

La répartition du cobalt dans les végétaux depend entièrement de l’espèce. L’absorption est contrôlée par différents mécanismes pour différentes espèces. L’absorption biologique exige un échange d’ions les algues mais chez les champignons l’on observe des procédés indépendants du métabolisme aussi bien que des procédés dépendants. Des conditions physiques telles que la salinité, la température, le Ph du milieu, et la présence d’autres métaux influencent les procédés d’absorption et d’accumulation dans les algues, chez les champignons, et les mousses.

Des concentrations toxiques empêchent le transport actif des ions. Chez les végétaux supérieurs, l’absorption du Co2+ par les racines exige un transport actif. Le transport à travers les cellules corticales se fait à la fois par und diffusion passive et par un procédé actif. Dans le xylème, le métal est transporté surtout par le flux d’exsudation. La répartition à travers les vaisseaux criblés est acropète par la formation de complexes avec des composés organiques. La faible mobilité du Co2+ chez les végétaux restreint sa circulation des tiges aux feuilles. On ne trouve pas de cobalt au siège actif de n’importe quelle chaine respiratoire d’enzymes. L’on trouve deux sièges de réaction du Co2+ dans la respiration mitochondriaque puisqu’il provoque des réactions différentas sur différents substrats tels que α-keto glutarate et succinate.

Dans les organismes inférieurs, le Co2+ empêche la biosynthèse tetraphyrolle mais dans les végétaux supérieurs il participe probablement à la formation de la chlorophylle b. Le métal ajouté de façon exogène provoque des destructions morphologiques dans les plastities (ou chromatophore) et change leur teneur en chlorphylle. Il empêche également la différentiation des grains d’amidon et modifie la structure et le nombre des chloroplastes par unité de surface de la feuille. Le rôle du cobalt dans la photosynthèse est controversable. Son action toxique se produit par inhibition de l’activité de PS2 et donc par réaction de Hill. Soit il inhibe le siège de la réaction ou composé de l’accepteur PS2 en modifiant le siège de l’électron accepteur Qb de la quinone secondaire. Le Co2+ réduit le transport des photoassimilés et la fixation sombre du CO2. Chez les plantes C4 et CAM, il gêne la fixation du CO2 en inhibant l’activité des enzymes en cause.

Le cobalt agit en tant que poison de préprophase et retarde ainsi le processus de caryocinèse et de cytocinèss. L’action du cobalt sur les cellules végétales est surtout turbagénique. Les composés du cobalt agissent sur l’axe mitosique, abountissant à la formation de ponts de chromatine, à la fragmentation, et à des ponts s’agglutinant à l’anaphase ainsi qu’à des cellules binucléaires. De fortes concentrations de cobalt empêchentla synthèse RNA et diminuent les quantités de DNA et RNA probablement en modifiant l’activité d’un grand nombre d’endo et d’exo nucléases.

L’action mutagéne des sels de cobalt provoque un trouble de la respiration mitochondriaques chez les levures. Dans la cytocinèse, mutant incomplet de la Chlamydomonas, il augmente le nombre de composés sulfhydriliques. Il a été démontré que le cobalt peut changer le sexe de plantes telles que Cannabis sativa, Lemma acquinoclatis, et de cultures de melons. Il relentit l’absorption photoréversible du phytochrome dans l’épicotyle du pois et gêne la biosynthese heme des champignons.

De faibles concentrations de Co2+ dans le milieu stimulent l’évolution de simples algues en végétaux supérieurs complexes. Des concentrations fortement supérieures sont toxiques. Une relation identique peut être établie pour le rendement d’une culture quand le métal est utilisé sous forme d’engrais, de produits chimiques avant ensemencement et semences.

Les effets toxiques du cobalt sur la morphologie incluent: chute des feuilles, inhibition du verdissage, nervures décolorées, fermeture prematurée de la feuille, et poids réduit de la pousse. Puisqu’il est un composé de la vitamine B12 et du coenzyme cobamide le Co2+ facilite la fixation du nitrogène moléculaire dans les nodosités radiculaires des légumineuses. Mais dans la cyanobacterie, CoCl2 inhibe la formation d’hétérocyste, la fixation de l’ammoniaque, et l’activité de la réductase du nitrate.

L’interaction du cobalt avec d’autres métaux dépend surtout de la concentration des métaux utilisés. Par exemple, de fortes doses de Co2+ vont provoquer une déficience en fer chez les végétaux et supprimer la fixation de Cd par les racines. Il agit aussi synergistement avec Zn, Cr, et Sn. Ni maitrise l’effect d’inhibition du cobalt sur la croissance protonémale des mousses, prouvant ainsi une relation antagonists.

Les effets bienfaisants du cobalt incluent: retardement du vieillissement de la feuille, augmentation de la résistance à la sécheresse pour les semences, régulation de l’accumulation alkaloide chez les plantes médicinales, et inhibition de la biosynthèse de l’éthylene.

Chez les végétaux inférieurs, la tolérance au cobalt implique un mécanisme de cotolérance. Le mécanisme de resistance à une concentration toxique peut être dû à un phénomène de desintoxication intracellulaire plutôt qu’à un transport défectueux. Chez les végétaux supérieurs, seules quelques familles avancées et tolérant le cuivre ont montré une cotolérance pour Co2+. Une tolérance au Co2+ peut parfois déterminer le changement taxinomique de plusieurs membres de Nyssaceae. A cause de al haute teneur en cobalt d’un sol constitué de serpentine, la fixation par les végétaux d’éléments essentiels est réduite, c’est un phénomène connu sous le nom de “problème de la serpentine” pour des familles de plantes de Nouvelle Calédonie telles que les Flacourtiaceae. De grandes quantités de calcium dans le sol peuvent contrebalancer les effets toxiques des métaux lourds dans des espèces adaptables poussant sur ce type de sol.

La biomagnification d’éléments potentiellement toxiques tel que le cobalt provenant de cendres de charbon ou l’eau dans les tissus nutritifs, nécessite une étude approfondie pour un épurage biologique effectif.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Acharya, P. &H.S. Chhatpar. 1981. Purification and characterization of 2 forms of 5′-AMP nucleotidase (E.C.3.1.3.5) fromNeurospora crassa. Indian J. Exp. Biol.19:953–955.PubMedGoogle Scholar
  2. Afusoaic, D. &T. Muraru. 1967. A study of trace element mobility (Mn, Mo, Cu, Co, Zn, and B) in acid, limed soils. Agrochim. Agrotehn. Pasuni. Finete.35:45–56.Google Scholar
  3. Agarwala, S.C., S.S. Bisht &C.P. Sharma. 1977. Relative effectiveness of certain heavy metals in producing toxicity and symptoms of iron deficiency in barley. Canad. J. Bot.55:1299–1307.Google Scholar
  4. Agrawal, M. &H.D. Kumar. 1977. Cobalt toxicity and its possible mode of action in the blue-green algaeAnacystis nidulans. Beitr. Biol. Pflanzen53:157–164.Google Scholar
  5. Ahluwalia, A.S. &M. Kaur. 1988. Effect of some heavy metal compounds on growth and differentiation in blue-green and green algae. Microbios53: 37–46.Google Scholar
  6. Aleshin, E.P., A.K. Sheudzhen, O.A. Doseeva & V.T. Rymar. 1987. Photosynthetic and respiratory activity in rice leaves as a function of cobalt supply to the plants. Dokl. Uses Ordena Lenina Ordena Trud Krasnago Znameni Akad. S-KH Nauk Lenina.0(II): 15–17.Google Scholar
  7. An, Pau-Tsen., T. Tsung-che &C. Kuan-yuen. 1975. Some properties of the phosphatidase produced byErwinia aroideae and its possible toxicity to radish cells. Phytopathol. Entomol.4: 85–93.Google Scholar
  8. Anisimov, A.A. &O.P. Ganicheva. 1978. Possible interchangeability between cobalt and zinc in plants. Fiziol. Biokhim. Kul’t. Rast.10:613–617.Google Scholar
  9. Arora, K.K., P.S. Sukhija &I.S. Bhatia. 1987. Partial purification and properties of lipase isolated from germinating sunflower (Helianthus annus) seeds. J. Res. Punjab Agric. Univ.24:130–138.Google Scholar
  10. Austenfeld, F.A. 1979a. Effects of nickel, cobalt and chromium on net photosynthesis of primary and secondary leaves ofPhaseolus vulgaris cultivar saxa. Photosynthetica13:434–438.Google Scholar
  11. —. 1979b. Phytotoxicity of nickel and cobalt onPhaseolus vulgaris cultivar saxa grown in solution culture. Z. Pflanzenernaehr. Bodenk.142:786–791.Google Scholar
  12. Babalakova, N., T. Kudrev &I. Petrov. 1986. Copper, cadmium, zinc and cobalt interactions in their absorption by pea plants. Fiziol. Rast.12: 67–73.Google Scholar
  13. Babu, T.S., S.C. Sabat &P. Mohanty. 1992. Alterations in photosystem II organization by cobalt treatment in the cyanobacteriumSpirulina platensis. J. Pl. Biochem. Biotechnol.1: 61–63.Google Scholar
  14. Baker, A.J.M., R.R. Brooks, A.J. Pease &F. Malaisse. 1983. Copper and cobalt tolerance in three closely related taxa within the genusSilene (Caryophyllaceae) from Zaire. Pl. Soil 73: 377–386.Google Scholar
  15. Banik, A.K. 1976. Mineral nutrition ofAspergillus niger for citric acid production. Folia Microbiol.21:139–143.Google Scholar
  16. Barbat, I., M. Tomsa &T. Suciu. 1979. Influence of foliar nutrition with microelements on some physiological processes in apple-tree. Bull. Inst. Agron. Cluj-Napora. Ser. Agric.33:69–74.Google Scholar
  17. Bell, J.B., J.P. Gelugne &K.B. Jacobson. 1976. A non-specific inhibitory effect of tRNA on the activity of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase fromSaccharomyces cerevisiae. Biochim. Biophys. Acta435:21–29.PubMedGoogle Scholar
  18. Belles, J.M. &V. Conejero. 1989. Ethylene mediation of the viroid-like syndrome induced by silver ions inGynura aurantiaca DC plants. Phytopathology124:275–284.Google Scholar
  19. Berrow, M.L. &R.L. Mitchell. 1980. Location or trace elements in soil profiles: total and extractable contents of individual horizons. Trans. R. Soc. Earth Sci.71:103–122.Google Scholar
  20. Berry, W.L. &A. Wallace. 1981. Toxicity: The concept and relationship to the dose response curve. J. Pl. Nutr.3:13–19.Google Scholar
  21. Blankenship, M.L. &K.M. Wilbur. 1975. Cobalt effects on cell division and calcium uptake in the coccolithophoroidCricosphaera carterae (Haptophyceae). J. Physiol.11:211–219.Google Scholar
  22. Bobak, M. 1974. Influence of exogenous added cobalt upon the submicroscopic structure and the chromosomes of meristematic cells of the horse bean (Vicia faba L.C.V. Zborovicky). Acta Fac. Rerum Nat. Univ. Comen., Physiol. Pl.8: 17–24.Google Scholar
  23. Bond, G. &E.J. Hewitt. 1962. Cobalt and the fixation of nitrogen by root nodules ofAlnus andcasuarina. Nature195: 94–95.Google Scholar
  24. Brooks, R.R. 1977. Copper and cobalt uptake byHaumanistrum species. Pl. Soil48:541–544.Google Scholar
  25. —. 1977. Cobalt and nickel uptake by the Nyssaceae. Taxon26:197–201.Google Scholar
  26. —. 1978. Copper and cobalt in African species ofAeolanthus Mart. (Plectranthinae, Labiatae). Pl. Soil50: 503–508.Google Scholar
  27. —. 1980. Hyperaccumulation of copper and cobalt: A review. Bull. Soc. Roy. Bot. Belgique113:166–172.Google Scholar
  28. Burca, S., D. Cachita-Cosma &M. Trifu. 1978. Morphological changes induced by four microelements, Mn, Zn, Co and Cd in tomato seedlings (Solanum lycopersicum). Stud. Univ. Babes-Bolyai.Biol.2: 11–18.Google Scholar
  29. —,—. 1984. Modifications caused by the trace elements manganese and cobalt in the ultrastructure of the roots of tomato seedlings. Stud. Univ. Babes-Bolyai. Biol.29: 27–34.Google Scholar
  30. Canterford, G.S. 1980. Formation and regeneration of abnormal cells of the marine diatomDitylum brightwelli. J. Mar. Biol. Assoc.60: 243–254.Google Scholar
  31. Chandra, G., K.S. Reddy &H.Y. Mohan Ram. 1981. Extension of vase-life of cut marigold (Tagetes patula) Crysanthemum flowers by the use of cobalt chloride. Indian J. Exp. Biol.19: 150–154.Google Scholar
  32. Chappel, W.R. 1979. Heavy metal pollution from shale oil production. Pages 592–595in Management, control of heavy metal: Proceedings of the Environmental International Conference. CEP Consultants, Edinburgh, Scotland.Google Scholar
  33. Chaudhury, F.M. &J.F. Loneragan. 1972. Zinc absorption by wheat seedlings: II Inhibition by hydrogen ions and by micronutrient cations. Soil Sci. Soc. Am. Proc.36: 327–331.Google Scholar
  34. Cherry, D.S. &R.K. Guthrie. 1979. The uptake of chemical elements from coal ash and settling basin effluent by primary producers: 2. Relation between concentrations in ash deposits and tissues of grasses growing on the ash. Sci. Total Environm.13: 27–32.Google Scholar
  35. Cocucci, S.M. &S. Morgutti. 1986. Stimulation of proton extrusion by potassium ion and divalent cations (nickel, cobalt, zinc) in maize (zea mays cultivar Dekalab XL85) root segments. Physiol. Pl.68: 497–501.Google Scholar
  36. Cole, R.M., W.A. MacPeek &W.S. Cohen. 1980. Divalent cations and restoration of electron transport activity of fatty acid treated chloroplasts. Pl. Sci. Lett.17: 345–352.Google Scholar
  37. Coleman, R.D. 1971. Zinc and cobalt bioconcentration and toxicity in selected algal species. Bot. Gaz.132:102–109.Google Scholar
  38. Coppenet, M., E. More, L.L. Corre &M.L. Mao. 1972. Variations in ryegrass cobalt content: Investigating enriching methods. Ann. Agron.23: 165–192.Google Scholar
  39. Cox, R.M. &T.C. Hutchingson. 1981. Multiple and co-tolerance to metals in the grassDeschampais cespitosa: Adaptation, preadaptation and ‘Cost’. J. Plant. Nutr.3: 731–741.Google Scholar
  40. Craig, L.G. &W.E. Schmid. 1974. Absorption of cobalt by excised barley roots. Pl. Cell Physiol.15: 273–279.Google Scholar
  41. Crouzillat, D., M.O. Desbiel, C. Penel &T. Gaspar. 1985. Lithium, aminoethoxy-vinylglycine and cobalt reversal of the cotyledonary prickling-induced growth inhibition in the hypocotyl ofBidens pilosus in relation to ethylene and peroxidases. Pl. Sci.40: 7–12.Google Scholar
  42. Csatorday, K., Z. Gombos &B. Szalontai. 1984. Manganese and cobalt toxicity in chlorophyll biosynthesis. Proc. Natl. Acad. Sci.81: 476–478.PubMedGoogle Scholar
  43. Dang, K.F.K., N.A. Solov’ena, Z.G. Evstigneeva &V.L. Kretovich. 1988. Specificity and regulation of glutamine synthetase activity by metals inSpirulina platensis Dokl. Akad. Nauk SSSR302:984–987.Google Scholar
  44. Danilova, T-A., I.V. Tishchenko &E.N. Demikina. 1969. Some characteristic effects of cobalt on peas. Agrokhimiya1: 85–89.Google Scholar
  45. —. 1970. Distribution and translocation of cobalt in legumes. Agrokhimiya2: 100–104.Google Scholar
  46. Davidova, E.G., A.P. Belov &V.V. Zachinskii. 1986. The accumulation of labelled cobalt in yeast cells. IZh. Timiryazev. S-KH. Akad.0(4): 109–114.Google Scholar
  47. Davis, R.D., P.H.T. Beckett &E. Wollen. 1978. Critical levels of twenty potentially toxic elements in young spring barley. Pl. Soil49: 395–408.Google Scholar
  48. El-Kadovsky, S. &V. Alexandrescu. 1987. Purification and some properties of sunflower leaf peroxidase. Rev. Roumaine Biochem.24: 19–26.Google Scholar
  49. Elliott, J.I. &J.M. Brewer. 1980. Binding of inhibitory metals to yeast enolase (EC 4.2.1.11). J. Inorg. Biochem.12: 323–334.PubMedGoogle Scholar
  50. Fjeldstad, H., O.O. Hvatum &J.E. Biorndalen. 1988. Heavy metal pollution of ombotropic bogs in the Kristiansand area, vet-Agder, Norway. Norweg. J. Agric. Sci2: 161–178.Google Scholar
  51. Florza, V. 1969. Toxicity of metal ions forAspergillus nidulans. Microbiol. Esp.22:131–138.Google Scholar
  52. Freiberg, G.Y. 1970. Absorption of trace elements Cu and Co by some field cultivars in relation to the content of organic matter in soil. Izv. Akad. Nauk. Latvijsk. SSR2: 116–121.Google Scholar
  53. Fujino, D.W. &M.S. Reid. 1983. Factors affecting the vase life of fronds of maiden hair fern (Adiantum raddianum). Sci Hort.21: 181–188.Google Scholar
  54. Gaal, I., H. Ariunaa &M. Gyuris. 1988. Influence of various stress effects on ethylene production in wheat seedlings. Acta Univ. Szeged. Acta Biol.34: 35–44.Google Scholar
  55. Gadd, G.M., C. White &J.L. Mowel. 1987. Heavy metal uptake by intact cells and protoplasts ofAureobasidium pollulans. Febs. Microbiol. Ecol.45: 261–268.Google Scholar
  56. Gilles, I., H.G. Loeffler &F. Schneider. 1981. Cobalt-substituted acylamino-acid amido-hydrolase fromAspergillus oryzae. Z. Naturf. Sect. C. Biosci.36: 751–754.Google Scholar
  57. Grinkevich, N.L., L.F. Gribovskaya, A.N. Shandova &L.S. Dinevich. 1971. Concentration of cobalt in some medicinal plants and its effect on the accumulation of flavonoids in buckwheat. Biol. Nauk.14: 88–91.Google Scholar
  58. Grover, S. &W.K. Purves. 1976. Cobalt and plant development: Interactions with ethylene in hypocotyl growth. Pl. Physiol.57: 886–889.Google Scholar
  59. Hall, A. 1980. Heavy metal co-tolerance in a copper-tolerant population of the marine fouling alga,Ectocarpus siliculosus. New Physiol.85: 73–78.Google Scholar
  60. Haydar, M. &D. Hadziyev. 1974. Mitochondrial lipids and their oxidation during mitochondrial swelling. J. Sci Food Agric.25: 1285–1305.PubMedGoogle Scholar
  61. Herich, R. 1965. The effect of cobalt on the structure of chromosome and on the mitosis. Chromosoma17: 194–198.PubMedGoogle Scholar
  62. —. 1977. Influence of exogenously added cobalt on the submicroscopical structure of the proplastids. Acta Fac. Rerum Nat. Univ. Comen. Pl. Physiol.13:3–8.Google Scholar
  63. Herichova, A. 1974. Study of the influence of cobalt spiralization of the chromosomes. Acta Fac. Rerum Nat. Univ. Comen. Pl. Physiol.9: 73–77.Google Scholar
  64. Hochman, Y., A. Lanir, M.M. Werber &C. Carmeli. 1979. The effect of binding of cobalt (III) — nucleotide complexes on the kinetic properties of adenosine triphosphatase activity in coupling factor I from chloroplasts. Arch. Biochem. Biophys.192:138–147.PubMedGoogle Scholar
  65. Hogan, G.D. &W.E. Rauser. 1979. Tolerance and toxicity of cobalt, copper, nickel and zinc in clones ofAgrostis gigantea. New Phytol. 83:665–670.Google Scholar
  66. Holloman, W.K. &R. Holliday. 1973. Studies on a nuclease fromUstilago maydis: 1. Purification properties and implication in recombination of the enzyme. J. Biol. Chem.248: 8107–8113.PubMedGoogle Scholar
  67. Hunter, J.G. &O. Verghano. 1953. Trace-element toxicities in oat plants. Ann. Appl. Biol.40: 761–777.Google Scholar
  68. Husic, H.D. &N.E. Tolbert. 1984. Anion and divalent cation activation of phosphoglycolate phosphatase from leaves. Arch. Biochem. Biophys.229: 64–72.PubMedGoogle Scholar
  69. Hyodo, H. &R. Fukasawa. 1985. Ethylene production in kiwi fruit (Actinidia chinensis cultivar. Hayward). J. Jap. Soc. Hort. Sci 54:209–215.Google Scholar
  70. Ilamanova, R.I. 1987. Effect of trace element on the vegetative growth and generative development of melons. Izv. Akad. Nauk. Turkmensk. SSR. Ser. Biol. Nauk.0(1): 19–26.Google Scholar
  71. Imai, I. &S.M. Siegel. 1973. A specific response to toxic cadmium levels in red kidney bean embryos. Pl. Physiol.29:118–120.Google Scholar
  72. Isola, M.C. &L. Franzoni. 1989. Effect of ethylene on the increase in RNAase activity in potato tuber tissue. Pl. Physiol. Biochem. 27:245–250.Google Scholar
  73. Iu, K.L., I.D. Pulford &H.J. Duncan. 1982. Influence of soil waterlogging on subsequent plant growth and trace element content. Pl. Soil66:423–428.Google Scholar
  74. Jack, A., J.E. Ladner, D. Rhodes, R.S. Brown &A. Klug. 1977. A crystallographic study of metal-binding to yeast phenylalanine transfer RNA. J. Molec. Biol.111: 315–318.PubMedGoogle Scholar
  75. Jarosick, J., P. Zvara, J. Koneeny &M. Obdrzalek. 1988. Dynamics of cobalt 60 uptake by roots of pea plants. Sci Total Environm.71:225–229.Google Scholar
  76. Johari, R.B., R. Nagar &R.C. Sharma. 1987. Studies on copper (II), nickel (II), cobalt (II) and zinc (II) complexes of acetone salicyloyl hydrazone and ethyl methyl ketone salicyloyl hydrazone. Indian J. Chem. Sect. A Inorg. Phys. Theor. Anal.26:962–963.Google Scholar
  77. Jonson, A.G. 1969. Some enzymatic properties ofapTOteasefromAlternariatenuissima. ActaChem. Scand.23:1943–1950.Google Scholar
  78. Jorgovic-Kremzer, J., M. Duricic &V. Bjelic. 1980. Levels of copper, manganese, zinc, cobalt, iron and lead in cucumbers before and after pickling. Agrohemija0(5/6): 165–172.Google Scholar
  79. Joshi, P.K., D.N. Bhatia &J.H. Kulkarni. 1987. Groundnut root nodulation as affected by micronutrient application andRhizobium inoculation. Int. J. Trop. Agric. 5:199–202.Google Scholar
  80. Juma, N.G. &M. Tabatabai. 1988. Phosphatase activity in corn and soybean roots: Conditions for assay and effects of metals. Pl. & Soil107: 39–48.Google Scholar
  81. Kameenova, Y.S.M., T.D. K’Drev &L.K.A. Shakhpazova. 1983. Effect of cobalt and mercury on some maize plant reactions. Fiziol. Rast.9: 78–82.Google Scholar
  82. —. 1981. The influence of some heavy metals on organic acid content in young maize plants. Fiziol. Rast.7:41–5.Google Scholar
  83. Kang, B.G. 1969. Effect of inhibitors of RNA and protein synthesis on bean hypocotyl hook opening and their implications regarding phytochrome action. Planta87: 217–226.Google Scholar
  84. Kapur, A. &R.H. Chopra. 1989. Effects of some metal ions on protonemal growth and bud formation in the mossTimiella anomala grown in aseptic cultures. J. Hattori Bot. Lab.0(66): 283–298.Google Scholar
  85. Karataglis, S., D. Babalonas &B. Kabasakalis. 1982. The ecology of plant populations growing on serpentine soils: 2. Calcium-magnesium ratio concentrations as development factors ofBuxus semipervirens. Phyton22: 317–328.Google Scholar
  86. Kashes, T.M. &A.S. Dolobovskaya. 1969. The effect of trace elements on the processes of division and extension of cells in connection with the germination ofFraxinus excelsior embryos. Mikroelem. V. S-KH. Med. Resp. Mezhved SB 5: 67–72.Google Scholar
  87. Kasimova, G.K., P.B. Zamanov, R.A. Abushev &M.G. Safarov. 1971. The effect of certain trace elements molybdenum, boron, manganese and cobalt on the background of mineral fertilizers on the biological activity of tobacco rhizosphere. Ref. Zhurn. Biol. 3: 7–9.Google Scholar
  88. Kassim, E.A. &I.M. Ghazi. 1981. Effect of minerals, activators and inhibitors on the biosynthesis ofcellulase from Aspergillus niger. Ain. Sham. Univ. Fac. Agric. Res. Bull.0(1605): 1–14.Google Scholar
  89. Kenesarina, N.A. 1972. The effect of mineral fertilizers on cobalt content in potato plants. Izv. Akad. Nauk. Kaz. SSR. Ser. Biol.6: 31–35.Google Scholar
  90. Khan, M.W. &M.A. Salam. 1990. Interactions ofMeloidogyne javanica, Fusarium udum andRhizobium on pigeon pea in the presence of nickel and cobalt as pollutants. Ann. Appl. Biol.116: 549–556.Google Scholar
  91. Kharab, P. &I. Singh. 1985. Genotoxic effects of potassium dichromate, sodium arsenite, cobalt chloride and lead nitrate in diploid yeast. Mutat. Res.155: 117–120.PubMedGoogle Scholar
  92. —. 1987. Induction of respiratory deficiency in yeast by salts of chromium, arsenic, cobalt and lead. Indian J. Exp. Biol.25: 141–142.PubMedGoogle Scholar
  93. Kim, B.Y., K.S. Kim, B.J. Kim &K.H. Han. 1978. Uptake and yield of the rice plant related to concentration of heavy metals (Cu, Ni, Cr, Co, Mn). Res. Rep. Off. Rural Developm.20: 1–10.Google Scholar
  94. Kim, C. &DJ. Weber. 1980. Isolation and characterization of ATPase fromSalicorniapacifica var. utahensis. Pl. Cell Physiol.21: 755–763.Google Scholar
  95. Kloke, A. 1980. Lecture. Pages 58–87in Proceedings Verwendung von klarschlammkon-posten in der Landwirtschaft. GDI Institut, Zurich.Google Scholar
  96. Komczynski, L., H. Nowak &L. Rejniak. 1963. Effect of cobalt, nickel and iron on mitosis in the roots of the broad bean (Vicia faba). Nature8: 1016–1017.Google Scholar
  97. Kostyaev, V.Y. 1980. Effect of heavy metal ions on Cyanobacteria (Anabaena spiroides). Mikrobiologiya49: 821–824.Google Scholar
  98. —. 1980. Sensitivity ofAnabaena spiroides to zinc and cobalt. Gidrobiol. Zhurn.16: 89–92.Google Scholar
  99. Koval’Skii, V.V., N.I. Grinkevich, I.F. Gribovskaya, L.S. Dinevich &A.N. Shandova. 1971. Cobalt in medicinal plants and its effect on the accumulation of biologically active compounds. Restit. Resur.7: 503–510.Google Scholar
  100. Kumar, D., M. Jha &H.D. Kumar. 1985. Heavy metal toxicity in the cyanobacteriumNostoc linekia. Aquatic. Bot.22:101–106.Google Scholar
  101. Kuyucak, N. &B. Volesky. 1989. The mechanism of cobalt biosorption. Biotechnol. Bioengin.33: 823–831.Google Scholar
  102. Lau, O.L. &S.F. Yang. 1976. Inhibition of ethylene production by cobaltous ion. Pl. Physiol.58: 114–117.Google Scholar
  103. Letunova, S.V., S.A. Alekseeva, B.N. Zolotareva, N.I. Kerova &E.M. Korobora. 1988. Cobalt and copper concentration by microscopic fungi inhabiting the soil of the non-chernozem zone (USSR). Biol. Nauki.0(2): 101–105.Google Scholar
  104. Levan, A. 1945. Cytological reactions induced by inorganic salt solutions. Nature156: 751.Google Scholar
  105. Ligocki, P., T. Olszewski &K. Slowik. 1988. Heavy metal content of the soil, apple leaves, spurs and fruit from three experimental orchards. I. Soils. Fruit Sci Rep.15: 27–34.Google Scholar
  106. Lim, Y.P. &B.D. Kim. 1988a. Isolation and characterization of a DNA-binding protein from pearl millet mitochondria. Korean J. Biochem.21: 351–356.Google Scholar
  107. —. 1988b. A novel topoisomerase from soluble fraction of pearl millet mitochondria: its purification and characterization. Korean J. Biochem.21:357–364.Google Scholar
  108. Lindergren, C.C., S. Nagai &H. Nagai. 1958. Induction of respiratory deficiency in yeast by manganese, copper, cobalt and nickel. Nature182: 446–449.Google Scholar
  109. Linehan, D.J., A.H. Sinclair &M.G. Mitchell. 1989. Seasonal changes in copper, manganese, zinc and cobalt concentrations in soil in the root-zone of barley (Hordeum vulgare L.). J. Soil Sci.40: 103–116.Google Scholar
  110. Lipskaya, G.A. 1970a. Accumulation of chlorophyll in the chloroplast of sugar beets to which cobalt is applied separately and in combination with boron, manganese, copper, zinc and molybdenum. Agrokhimiya2: 105–110.Google Scholar
  111. —. 1970b. Anatomo-cytological features of cucumber leaves in the presence of cobalt and manganese in the nutrient mixture. Fiziol. Rast.17: 475–981.Google Scholar
  112. —. 1971. Characteristics of the effect of the same concentration of cobalt on the photosynthetic apparatus of different plants. Vyestsi. Akad. Navuk. Byelarus. SSR Syer. Biyal. Navuk.1:14–20.Google Scholar
  113. —. 1972. Accumulation of chlorophyll in chloroplasts of cucumber leaves under the effect of cobalt and manganese applied separately and together. Biol. Nauki.15: 90–94.Google Scholar
  114. —. 1974. Effect of cobalt and heteroauxin on the morphology and structure of barley leaf. Vyestsi. Akad. Navuk. BSSR Syer. Biyal. Navak.5:121–123.Google Scholar
  115. —. 1988. Morphofunctional characteristics of the photosynthetic apparatus of the growing barley leaf under the effect of cobalt and auxin. Fiziol. Biokhim. Kul’t. Rast.20: 241–245.Google Scholar
  116. —. 1990. Development of the photosynthetic apparatus in barley grown from seeds varying in cobalt content under sterile and nonsterile conditions. Fiziol. Rast.37: 668–674.Google Scholar
  117. —. 1973. Effect of various combination of cobalt with other trace elements on the change of activity of the Hill reaction. Vyesti. Akad. Navuk. B. SSR Syer. Biyal. Navuk.2: 32–37.Google Scholar
  118. —. 1972. Effect of cobalt on accumulation of various forms of chlorophyll. Dokl. Akad. Nauk. B. SSR.116: 70–72.Google Scholar
  119. Lixandru, G., E. Taranauceanu &G. Ciurea. 1979. Effect of nitrogen, phosphorus, potassium and trace element fertilizers on soybean (Glycine hispida) yield. Lucr. Stiint. Inst. Agron. “N. Balcescu”. Agron. J.23: 63–66.Google Scholar
  120. Long, M.I.E. &S. Frederiksen. 1970. The relation between extractable soil cobalt and the cobalt content of some grasses from lake shore areas of Uganda. Bodenk & Pflanzenernahr.126:238–244.Google Scholar
  121. Lovkova, M.Y., G.N. Buzuk, N.S. Sabirova, N.I. Kliment’eva &N.I. Grinkevich. 1988. Pharmacognostic examination ofGlaucium flavum Cr. Farmatsiya37: 31–34.Google Scholar
  122. Lukshene, Z.B., N.I. Zakharova, E.P. Lukshev, A.A. Kononenko, E.M. Kolosova, G.N. Novodarova &M.E. Vol’pin. 1985. Effect of oi-phenanthroline complexes of cobalt and copper on light induced electron transfer in chloroplasts and chloroplast fragments enriched with photo system I. Biokhimiya50: 1440–1447.Google Scholar
  123. Macklon, A.E.S. &A. Sim. 1987. Cellular cobalt fluxes in roots and transport of the shoots of wheat seedlings. J. Exp. Bot.38: 1663–1677.Google Scholar
  124. —. 1990. Cortical cell fluxes of cobalt in roots and transport to the shoots of rye grass seedlings. Pl. Physiol.80: 409–416.Google Scholar
  125. Madan, M. &K.S. Thind. 1979. Role of trace elements on the growth and sporulation ofAlternaria chartarum andAlternaria solani. Proc. Indian Natl. Sci Acad. B Biol. Sci.45: 628–632.Google Scholar
  126. Mandal, R. &J.W. Parsons. 1989. Effect of chlorides of cobalt, nickel and copper on nitrification in peat. Pakistan J. Sci Industr. Res.32:584–586.Google Scholar
  127. Manley, S.L. 1984. Micronutrient uptake and translocation byMicrocystis pyrifera (Phaeophyceae). J.Phycol.20: 192–201.Google Scholar
  128. McKenzie, R.M. 1972. The manganese oxides in soils: A review. Bodenk. & Pflanzenernähr.131: 221–242.Google Scholar
  129. Mercky, R., J.H. Van Grinkel, J. Sinnaeve &A. Cremers. 1986. Plant induced changes in the rhizosphere of maize and wheat: II Complexion of Co, Zn and Mn in the rhizosphere of maize and wheat. Pl. Soil96: 95–101.Google Scholar
  130. Mirzoeva, Z.A., E.R. Mirzoev &M.S. Bezhaev. 1969. Complex deficiency of trace elements (manganese, zinc, cobalt) in orchard soils of highland Dagestan. Sb-Nauchn. Soobshch. Dagest. Univ. Kafedry. Khim.5: 102–104.Google Scholar
  131. Mohan, P.M. &K. Sivaramasastry. 1983. Interrelationship in trace-element metabolism in metal toxicities in nickel-resistant strains ofNeurospora crassa. Biochem. J.212: 205–210.Google Scholar
  132. Mohanty, N., I. Vass &S. Demeter. 1989. Impairment of photosystem 2 activity at the level of secondary quinone electron acceptor in chloroplasts treated with cobalt, nickel and zinc ions. Physiol. Pl.76: 386–390.Google Scholar
  133. Morrison, R.S., R.R. Brooks, R.D. Reeves &F. Malaisse. 1979. Copper and cobalt uptake by metallophytes from Zaire. Pl. Soil53: 535–540.Google Scholar
  134. Munda, I.M. &V. Hudnik. 1988. The effects of zinc, manganese and cobalt accumulation on growth and chemical composition ofFucus vesiculosus L. under different temperature and salinity conditions. Mar. Ecol.9: 213–216.Google Scholar
  135. Muresanu, P.L. &G. Catrina. 1966. Contributions of the knowledge of the content of microelements: Cu, Co and Zn: Available to plants in characteristic soil types of Western Romania. Inst. Agron. Timisoara. Lucr. Stint. Ser. Agron.9: 75–83.Google Scholar
  136. Muthukrishnan, S., G. Padmanaban &P.S. Sharma. 1969. Regulation of heme biosynthesis inNeurospora crassa. J. Biol. Chem.244: 4241–4246.PubMedGoogle Scholar
  137. Naoharu, M. 1968. Studies on chemical characteristics of Serpentine soil in Hokkaido: III: The content of cobalt in plants and soils and the difference of the plant absorption rate of cobalt and other elements (copper, zinc and nickel) from the soil. Bull. Hokkaido Prefect. Agric. Exp. Sta.17: 62–72.Google Scholar
  138. Nash, T.H. 1975. Influence of effluents from a zinc factory on lichens. Ecol. Monogr.45: 183–198.Google Scholar
  139. Nguyen, T.T., A. Ngam-ek, J. Jenkins &S.D. Grover. 1988. Metal ion interactions with phosphoenol pyruvate carboxylase fromCrassula argentea andZea mays. Pl. Physiol.86: 104–107.Google Scholar
  140. Nieboer, E., P. Lovoie, R.L.P. Sasseville, K.J. Puckett &D.H.S. Richardson. 1976a. Cation-exchange equilibrium and mass balance in the lichenUmbilicaria muhlenbergii. Canad. J. Bot.54: 720–723.Google Scholar
  141. —. 1976b. The uptake of nickel byUmbilicaria muhlenbergii: a physicochemical process. Canad. J. Bot.54: 724–733.Google Scholar
  142. Niehaus, W.G. &R.P. Dilts. 1984. Purification and characterization of glucose-6-phosphate dehydrogenase(EC 1.1.11.49) fromAspergillus parasiticus. Arch. Biochem. Biophys.228: 113–119.PubMedGoogle Scholar
  143. Norris, P.R. &D.P. Kelly. 1977. Accumulation of cadmium and cobalt bySaccharomyces cerevisiae. J. Gen. Microbiol.99: 317–324.Google Scholar
  144. Okamoto, K., M. Suzuki, M. Fukami, S. Toda &K. Fuwa. 1977. Uptake of heavy metals by a copper-tolerant fungus,Penicillium ochrochloron. Agric. Biol. Chem.41: 17–22.Google Scholar
  145. Parashar, R.K., R.S. Sharma, R. Nagar &R.C. Sharma. 1987. Biological studies of ONS and ONN donor Schiff bases and their copper (II), nickel (II), zinc (II), cobalt (II) and manganese (II) complexes. Curr. Sci.56: 518–521.Google Scholar
  146. Paribok, T.A., N.A. Sazykina, G.A. Temp, E.A. Troitskaya, G.D. Leina &E.G. Chervyakova. 1982. Metal content in leaves of urban trees. Bot. Zhurn.67: 1533–1539.Google Scholar
  147. Passow, H., A. Rothstein &T.W. Clarkson. 1961. The general pharmacology of the heavy metals. Pharmacol. Rev.13: 185–224.PubMedGoogle Scholar
  148. Patel, P.M., A. Wallace &R.T. Mueller. 1976. Some effects of copper, cobalt, cadmium, zinc, nickel and chromium on growth and mineral element concentration in chrysanthemum. J. Amer. Soc. Hortic. Sci.101: 553–556.Google Scholar
  149. Peterson, C.A. &W.E. Rauser. 1979. Callose deposition and photo assimilate export inPhaseolus vulgaris exposed to excess cobalt, nickel and zinc. Pl. Physiol.63: 1170–1174.Google Scholar
  150. Petrishek, I.A., M.Y. Lovkova, N.I. Grinkevich, L.P. Orlova &L.V. Polvdennyi. 1983. The influence of microelements (cobalt and copper) on the accumulation of alkaloids inAtropa belladona. Izv. Akad. Nauk. SSSR Ser. Biol.0(6): 879–887.Google Scholar
  151. Phung, H.T., L.J. Lund, A.L. Page &G.R. Bradford. 1979. Trace elements in fly ash and their release in water and treated soils. J. Environm. Qual.8: 171–175.Google Scholar
  152. Platash, I.T., L.I. Dyeryuhina &V.S. Art’omchenko. 1972.Astragalus micro-element. Farm. Zhurn.27: 64–65.Google Scholar
  153. Poole, D.B.R., L. Moore, T.F. Finch, M.J. Gardiner &G.A. Fleming. 1974. An unexpected occurrence of cobalt pine in lambs in North Leinster. Irish J. Agric. Res.13: 119–122.Google Scholar
  154. Prazmo, W., E. Balbin, H. Baranowska, A. Ejchart &A. Putrament. 1975. Manganese mutagenesis in yeast: II. Conditions of induction and characteristics of mitochondrial respiratory differentSaccharomyces cerevisiae mutants induced with manganese and cobalt. Genet. Res.26: 21–29.PubMedGoogle Scholar
  155. Puckett, K.J. 1976. The effect of heavy metals on some aspects of lichen physiology. Canad. J. Bot.54: 2695–2703.Google Scholar
  156. —. 1973. Sulfur dioxide: Its effect on photosynthetic14C fixation in lichens and suggested mechanisms of phytotoxicity. New Phytol.72: 141–154.Google Scholar
  157. Putrament, A., H. Baranowska, A. Ejchart &N. Jachymczyk. 1977. Manganese mutagenesis in yeast VI. Mn2 uptake, mt DNA replication and ER induction. Comparison with other divalent cations. Molec. Gen. Genet. 151:69–76.Google Scholar
  158. Rai, L.C. &S.K. Dubey. 1989. Impact of chromium and tin on a nitrogen-fixing cyanobacteriumAnabaena doliolum: Interaction with bivalent cations. Environm. Safety17: 94–104.Google Scholar
  159. Ram, H.Y.M. &R. Sett. 1979. Sex reversal in the female plantsCannabis sativa by cobalt ion. Proc. Indian Acad. Sci.,B 88: 303–308.Google Scholar
  160. Ramada, S., A.A. Razak &A.M. Hamed. 1988. Partial dependence ofAspergillus fumigatus thermophilism on additive nutritional requirements. Mikrobiologia25: 57–66.Google Scholar
  161. Rauser, W.E. 1978. Early effect of phytotoxic burdens of cadmium, cobalt, nickel and zinc in white beans. Canad. J. Bot.56: 1744–1749.Google Scholar
  162. —. 1980. Vein loading in seedlings ofPhaseolus vulgaris exposed to excess cobalt, nickel and zinc. Pl. Physiol.65: 578–583.Google Scholar
  163. —. 1981. Effect of excess cobalt, nickel and zinc on the water relations ofPhaseolus vulgaris cultivar Kentwood. Environm. Exp. Bot.21: 249–256.Google Scholar
  164. Razaque, M.A., S. Ito &M. Yatazawa. 1980. Taxonomic characteristics in accumulating cobalt and nickel in the temperate forest vegetation in Central Japan. Soil Sci. Pl.Nutr.26: 271–280.Google Scholar
  165. Reddy, T.V. 1988. Mode of action of cobalt extending the vase life of cut roses. Sci Hort.36: 303–314.Google Scholar
  166. Rehab, F.I. &A. Wallace. 1978a. Excess trace metal elements on cotton: 2. Copper, zinc, cobalt and manganese in yolo loam soil. Commun. Soil. Sci Pl. Analysis9: 519–528.Google Scholar
  167. —. 1978b. Excess trace metal effects on cotton: 1. Copper, zinc, cobalt and manganese in solution culture. Commun. Soil Sci. Pl. Analysis9: 517–518.Google Scholar
  168. Reynolds, T.L. 1987. A possible role for ethylene during IAA-induced pollen embryogenesis in anther cultures ofSolanum carolinense L. Amer. J. Bot.74: 967–969.Google Scholar
  169. Robson, A.D. &G.R. Mead. 1980. Seed cobalt inLupinus angustifolius. Austral. J. Agric. Res. 31: 109–116.Google Scholar
  170. — &K. Snowball. 1987. Response of narrow-leafed lupines to cobalt application in relation to cobalt concentration in seed. Austral. J. Exp. Agric.27: 657–660.Google Scholar
  171. Rojas, O.D., L.R. McDowell, J.E. Moore, F.G. Martin &W.R. Ocumpaugh. 1987. Mineral concentration of tropical grasses as affected by age of regrowth. Trop. Grasslands21: 8–14.Google Scholar
  172. Romanovskaya, O.I., V.V. II’in &O.Z. Kreitsberg. 1988. Ethylene biosynthesis in winter wheat and kidney beans upon growth inhibition with chlorocholine chloride. Fiziol. Rast.35: 893–898.Google Scholar
  173. Rosko, J J. &J.W. Rachlin. 1975. The effect of copper, zinc, cobalt and manganese on the growth of the marine diatomNitzschia closterium. Bull. Torrey Bot. Club102: 100–106.Google Scholar
  174. Roy, A.K. &L.L. Srivastava. 1988. Removal of some micronutrients by forage crops in soils. J. Indian Soc. Soil Sci.36: 133–137.Google Scholar
  175. Rudyk, V.F. &L.N. Korchagina. 1977. Effect of metal ions on the activity of lipase fromNigella damascena L. seeds. Prikl. Biokhem. Mikrobiol.13: 319–323.Google Scholar
  176. Ruhling, A. &G. Tyler. 1970. Sorption and retention of heavy metals in woodland mossHylocomium splendens (Hedw.). Br. et Sch. Oikos21: 92–97.Google Scholar
  177. Ryndina, D.D. &G.G. Polikarpov. 1983. Distribution of certain chemical elements in biochemical fractions of the black sea algaCystoseira barbata. Gidrobiol. Zhurn.19: 79–84.Google Scholar
  178. Sal’kova, E.G. &E.A. Bulantseva. 1988. Effect of cobalt and silver ions on ethylene evolution by discs from the peel. Prikl. Biokhem. Mikrobiol.24: 698–702.Google Scholar
  179. Samarkoon, A.B. &W.E. Rauser. 1979. Carbohydrate levels and photoassimilate export from leaves ofPhaseolus vulgaris exposed to excess cobalt, nickel and zinc. Pl. Physiol.63: 1165–1169.Google Scholar
  180. Sarse, F. 1979. Investigation of serpentine sites in France, Italy, Austria and West Germany: 2. Plant analysis. Flora168: 578–594.Google Scholar
  181. Satsukyevich, V.B. 1972. Effects of copper and cobalt on dehydrogenase activity and intensive respiration of potato shoots. Vyestsi. Akad. Navuk. BSSR Syer. Biyal. Wavuk.2: 42–46.Google Scholar
  182. —. 1975. Changes of the physiological and biochemcal indices and productivity of sugar beet under conditions of the after effect of copper and cobalt. Vyestsi. Akad. Navuk. BSSR Syer. Biyal. Navuk.5: 554–558.Google Scholar
  183. Sawan, Z.M. 1985. Effect of nitrogen fertilization and foliar application of calcium and micro-elements on yield, yield components and fibre properties of Egyptian Cotton, Egypt. J. Agron.10: 24–38.Google Scholar
  184. —. 1989. Effect of nitrogen fertilisation and foliar application of calcium and micro-elements on cotton seed yield, viability and seedling vigour. Seed Sci. Techn.17: 421–432.Google Scholar
  185. Schrauzer, G.N. 1991. Cobalt. Pages 879–892in E. Merian (ed.), Metals and their compounds in the environment. VCH Verlagsgesellschaft, Weinheim, Germany.Google Scholar
  186. Sen, C. 1973. Enzyme make-up ofTrichophyton rubrum andT. mentagrophytes III—urease activity. Indian J. Mycol. Pl. Pathol.3: 159–164.Google Scholar
  187. Sharma, C.P., S.S. Bisht &S.C. Agarwala. 1978. Effect of excess supply of heavy metals on the absorption and translocation of iron (59 Fe) in barley. J. Nucl. Agric. Biol.7: 12–14.Google Scholar
  188. Sharma, H.N. &C.P. Ghonsikar. 1976. Effect of micronutrients on nodulation in cowpea (Vigna sinensis L.). Indian J. Microbiol.16: 109–115.Google Scholar
  189. Shimazaki, Y. &M. Furuya. 1980. Effects of divalent cations and EDTA on special properties of phytochrome in particulate fractions from etiolated pea (Pisum sativum) Cultivar Alaska. Pl. Cell Physiol.21:855–863.Google Scholar
  190. Shumik, S.A. &S.Y. Mininberg. 1975. Change in content of nucleic acids in black currant leaves molybdenum and cobalt. Fiziol. Biokhim. Kul’t. Rast.7: 632–636.Google Scholar
  191. —. 1980. Nitrate-reductase activity of different plant species affected by trace elements. Ukrayins’k Bot. Zhurn.37: 7–9.Google Scholar
  192. Siddiqui, M.H., A. Mathur, D. Mukherji &S.N. Mathur. 1982. Regulation of nitrate reductase (EC 1.9.6.1) activity inVigna mungo by divalent cations. Angew. Bot.56: 407–412.Google Scholar
  193. Siegel, S.M. 1977. The cytotoxic response ofNicotiana protoplasts to metal ions: A survey of the chemical elements. Water Air Soil Pollut.8: 293–304.Google Scholar
  194. Sivalingam, P.M. 1980. Toxicities of trace metals onChlorella vulgaris isolated from palm oil mill sludge. Jap. J. Phycol.28: 159–164.Google Scholar
  195. — &R.R. Ismail. 1981.Cladophora fascicularis as a prominent global algal monitor for trace element pollutants: 1. High concentration stresses and modes of biodeposition. Jap. J. Phycol.29: 171–179.Google Scholar
  196. Spiess, L.D., B.B. Lippincott &J.A. Lippincott. 1973. Effect of hormones and vitamin B12 on gametophore development in the mossPolaisiella selwynii. Amer. J. Bot.60: 708–716.Google Scholar
  197. Strauss, R. 1986. Nickel and cobalt accumulation by characeae. Hydrobiologia14: 263–268.Google Scholar
  198. Subik, J. &J. Kolarov. 1970. Metabolism of calcium and effect of divalent cations on respiratory activity of yeast mitochondria. Folia Microbiol.15: 448–458.Google Scholar
  199. Tarabrin, V.P. &T.R. Teteneva. 1979. Presowing treatment of seeds and its effect on drought resistance of woody plant seedlings. Ekologija0(3): 39–46.Google Scholar
  200. Tateda, Y. &J. Misonolu. 1988. Marine indicator organisms of cobalt, strontium, cesium, Denryoku. Chuo Kenkyusho Hokoku.0(U88007): 1–19.Google Scholar
  201. Thorn, M., J. Willenbrink &A. Maretzki. 1983. Characteristics of ATPase from sugarcane (Saccharum sp.) protoplast and vacuole membranes. Pl. Physiol.58: 497–504.Google Scholar
  202. Tittle, F.L. 1987. Auxin-stimulated ethylene production in fern gametophytes and sporophytes. Pl. Physiol.70: 499–502.Google Scholar
  203. Tosh, S., M.A. Choudhuri &S.K. Chatterjee. 1979. Retardation of lettuce (Lactuca sativa) leaf senescence by cobalt ions. Indian J. Exp. Biol.17: 1134–1136.Google Scholar
  204. Tran Van, L. &D.K. Teherani. 1988. Accumulation and distribution of elements in rice (seed, bran, layer, husk) by neutron activation analysis. J. Radioanal. Nucl. Chem.128: 35–42.Google Scholar
  205. Tripathy, B.C. &P. Mohanty. 1981. Stabilization by glutaraldehyde fixation by chloroplast membrane structure and function against heavy metal ion induced damage. Pl. Sci. Lett.22: 253–261.Google Scholar
  206. Tu- S., E. Nungesser &D. Braver. 1989. Characterization of the effects of divalent cations on the coupled activités of the proton—ATPase in tonoplast vesicles. Pl. Physiol.90: 1636–1643.Google Scholar
  207. Tuppy, H. &W. Sieghart. 1973. Effect of Co2+ on yeast mitochondria. Monatsh. Chem.104: 1433–1443.Google Scholar
  208. Underwood, E.J. 1975. Cobalt. Nutr. Rev.33: 65–69.Google Scholar
  209. Veltrup, W. 1981. The effect of heavy metals on the activity of ATPase. Ber. Deutsch. Bot. Ges.93: 659–666.Google Scholar
  210. Venkatarayappa, T., M.J. Tsujita &D.P. Murr. 1980. Influence of cobaltous ion on the post-harvest behaviour of roses (Rosa hybrida cultivar samantha). J. Amer. Soc. Hort. Sci.105:148–151.Google Scholar
  211. —. 1981. Effect of cobalt and sucrose on the physiology of cut roses (Rosa hybrida cultivar samantha). J. Hort. Sci.56: 21–25.Google Scholar
  212. Venkateswerlu, G. &G. Stotzky. 1986. Copper and cobalt alter the cell wall composition ofCunninghamella blakesleeana. Canad. J. Microbiol.32: 654–662.Google Scholar
  213. —. 1989. Binding of metals by cell walls ofCunninghamella blakesleeana grown in the presence of copper or cobalt. Appl. Microbiol. Biotechnol.31: 619–625.Google Scholar
  214. —. 1970. The mechanism of uptake of cobalt ions byNeurospora crassa. Biochem.J.118: 497–503.PubMedGoogle Scholar
  215. —. 1973. Interrelationship in trace-element metabolism in metal toxicities in a cobalt-resistant strain ofNeurospora crassa. Biochem. J.132: 673–680.PubMedGoogle Scholar
  216. Volkorezov, V.I. 1968. Pretreatment ofPinus sylvestris seeds with cobalt sulfate. Uch. Zap. Gor’k Univ.90: 114–117.Google Scholar
  217. Vyechar, A.S., V.B. Satsukyevich &A.Y. Shyrnyuk. 1974. Effect of trace elements on the acidity of dehydrogenase and polyphenol oxidase in potato chloroplasts. Vyestsi. Akad. Navuk. B. SSR Syer. Biyal. Navuk.3: 35–40.Google Scholar
  218. Wallace, A. 1982. Additive, protective and synergistic effects of plants with excess trace elements. Soil Sci.133: 319–323.Google Scholar
  219. -& E.M. Romney. 1977. Roots of higher plants as a barrier in translocation of some metals to shoots of plants. Pages 370–379in Biological implications of metals in the environment. Proc. 15th Ann. Hanford Life Sci. Symp. Richland, Washington.Google Scholar
  220. —. 1989. Low levels but excesses of five different trace elements, singly and in combination, on interactions in bush beans grown in solution culture. Soil Sci.147: 439–441.Google Scholar
  221. —. 1989. Dose response curves for zinc, cadmium and nickel in combinations of one, two or three. Soil Sci.147: 401–410.Google Scholar
  222. —. 1977. Cyanide effects on transport of trace metals in plants. Commun. Soil Sci. Pl. Analysis8: 709–712.Google Scholar
  223. —. 1976. High levels of four heavy metals on the iron status of plants. Commun. Soil Sci. Pl. Analysis7: 43–46.Google Scholar
  224. —. 1982. Mineral composition of native wood plants growing on a serpentine soil in California, USA. Soil Sci.134: 42–44.Google Scholar
  225. Wang, L., G. Li &T. Tsao. 1990. Preliminary studies on chemical control of sex expression inLemna acquinoctialis strain 6746, Wassmann. J. Biol.47:127–135.Google Scholar
  226. Wangen, L.E. &F.B. Turner. 1980. Trace elements in vegetation downwind of a coal-fired power plant. Water Air Soil Pollut.13: 99–108.Google Scholar
  227. Warr, J.R. &D. Gibbons. 1973. Effect of benzimidazole and cobalt on free cystine levels ofChlamydomonas wild type and cell division mutant strains Exp. Cell Res.78: 454–456.Google Scholar
  228. —. 1977. Low molecular weight sulphydryl compounds and the expression of a cell division mutant ofChlamydomonas reinhardi. Exp. Cell Res.104: 442–445.PubMedGoogle Scholar
  229. Watrud, L.S. &A. H. Ellingboe. 1973. Cobalt as a mitochondrial density marker in a study of cytoplasmic exchange during mating ofSchizophyllum commune. J. Cell Biol.59: 127–133.PubMedGoogle Scholar
  230. Werner, V. 1979. Effect of nickel, cadmium and cobalt on the uptake of copper by intact barley (Hordeum distichon) roots. Z. Pflanzenphysiol.93: 1–10.Google Scholar
  231. Wheeler, R.M. &F.B. Salisbury. 1981. Gravitropism in higher plants shoots: 1. A role for ethylene. Pl. Physiol.67: 686–690.Google Scholar
  232. White, C. &G.M. Gadd. 1986. Uptake and cellular distribution of copper, cobalt and cadmium in strains ofSaccharomyces cerevisiae cultured on elevated concentrations of these metals. F.E.M.S. Microbiol. Ecol.38: 277–284.Google Scholar
  233. —. 1981. Variation in nitrogen, sulfur, selenium, cobalt, manganese, copper and zinc contents of grain from wheat (Triticum aestivum) and 2 lupine (Lupinus) species grown in a range of Mediterranean environment. Austral. J. Agric. Res.32: 47–60.Google Scholar
  234. Wiersma, D. &B.J.V. Goor. 1979. Chemical forms of nickel and cobalt in phloem ofRicinus communis. Pl. Physiol.45: 440–442.Google Scholar
  235. Williams, S.L., D.B. Avlenbach &N.L. Clesceri. 1977. Distribution of metals in lake sediments of the Adirondacks region of New York State.In Biological implications of metals in the environment. ERDA Symposium Series42: 153–166.Google Scholar
  236. Willis, R.B.H. &K.J. Scott. 1974. A role for minerals in the development of superficial scald of apples. J. Sci. Food Agric.25:149–151.Google Scholar
  237. Wojciechowska, B. &H. Kocik. 1987. Effect of cadmium, cobalt and bismuth nitrate on the root meristem ofVicia faba L. Pr. Nauk. Univ. Slask. Katowicak.0(932): 74–91.Google Scholar
  238. Wong, M.H. 1980. Toxic effects of cobalt and zinc onChlorella pyrenoidosa (26) in soft and hard water. Microbios28: 19–26.PubMedGoogle Scholar
  239. Yadav, D.V., S.S. Khanna &R.P. Yadav. 1986. Modelling cobalt and phosphorus response in some legumes. Int. J. Trop. Agric.4: 228–232.Google Scholar
  240. Yadrov, B.N., S.E. Donitruk &V.G. Baturin. 1978. The effect of copper, manganese and cobalt on the productivity of a culture of isolated tissueof Datura innoxia Mill. Rastitel’n. Resursy.14: 408–411.Google Scholar
  241. Yagodin, B.A. &G.F. Khailova. 1969. Cytological characteristics of the leaf palisade parenchyma of Co-chlorotic plants of beans. Fiziol. Rast.16: 929–931.Google Scholar
  242. —. 1981. Effect of cobalt on buckwheat yield and on the content of mineral elements and rutin. Izv. Timiryazev. S-Kh. Akad.0(6): 68–72.Google Scholar
  243. —. 1982. Yield and quality of chinese cabbage is seed treatment with trace elements. Izv. Timiryazev. S-Kh. Akad.0(2): 98–104.Google Scholar
  244. —. 1970. Effect of cobalt on nitrate reductase activity in leguminous plants. Sel’skokhoz. Z. Bot.5:134–136.Google Scholar
  245. Yang, X.H., R.R. Brooks, T. Jaffre &J. Laee. 1985. Elemental levels and relationships in the flacourtiaceaeof New Caledonia and their significance for the evaluation of ‘Serpentine problem’ Pl. Soil87: 281–292.Google Scholar
  246. Yarnall, M., T.C. Rowe &W.K. Holloma. 1984. Purification and properties of nuclease fromUstilago maydis. J. Biol. Chem.259: 3026–3032.PubMedGoogle Scholar
  247. Yopp, J.M. 1973. The role of light and growth regulators in the opening of theDentaria petiolar hook. Pl. Physiol.54: 7141–7147.Google Scholar
  248. Young, L.A. &E.C. Sisler. 1990. Interaction of discamba (3,6-dichloro-o-anisic acid) and ethylene on tobacco leaves. Tobacco Sci.34: 34–35.Google Scholar
  249. Young, T.F. &N. Terry. 1984. Specificity of iron transport in iron-stressed sugar beet (Beta vulgaris cultivar F 58 — 5541 + 1). Evidence for preferential accumulation of cobalt in the presence of iron. Canad. J. Bot.62: 207–210.Google Scholar

Copyright information

© The New York Botanical Garden 1994

Authors and Affiliations

  • Syamasri Palit
    • 1
  • Archana Sharma
    • 1
  • Geeta Talukder
    • 2
  1. 1.Centre for Advanced Study in Cell and Chromosome Research Department of BotanyUniversity of CalcuttaCalcuttaIndia
  2. 2.Vivekananda Institute of Medical SciencesCalcuttaIndia

Personalised recommendations