Advertisement

The Botanical Review

, Volume 64, Issue 3, pp 273–289 | Cite as

Robertsonian fusion and centric fission in karyotype evolution of higher plants

  • Keith Jones
Article

Abstract

Robertsonian fusion and centric fission are uniquely detectable in comparative studies of karyotype patterns. They are the most important types of karyotype change in animals but seem to be relatively uncommon in higher plants. Both modify intra- and interchromosomal recombination and linkage relationships and consequently patterns of genetic variation. When differentiating populations or species they can produce postulating barriers to gene flow. The number of reported cases of fusion or fission in higher plants has increased over the years but remains low, and most of these are casual comparisons of karyotypes without any follow-up investigation. This review focuses on more adequate studies made in a few groups.

Studies in the Tradescantieae produce the strongest evidence for fusion as a type of orthoselection in the subfamily. Some species ofLycoris are also considered to have evolved their karyotypes in that way. Some genera of slipper orchids and the cycad genusZamia have populations where atypical chromosome number increase can be attributed to fission probably as a result of stressful influences.

It is suggested that fusion may have been involved in the evolution of many stable karyotypes and that fission is generally a secondary destabilizing mechanism which may lead to refusion in the long term. Their proven incidence remains making it unwise to suggest that they have been major influences in karyotype evolution in higher plants.

Keywords

Chromosome Number Botanical Review Basic Number Chromosome Evolution Chiasma Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bennett, M. D. &I. J. Leitch 1997. Nuclear DNA amounts in Angiosperms—583 new estimates. Ann. Bot. 80: 169–196.CrossRefGoogle Scholar
  2. Bidau, C. J. 1990. The complex Robertsonian system ofDichroplus pratensis (Melanoplinae: Acrididae). II. Effects of the fusion polymorphisms on chiasma frequency and distribution. Heredity 64: 145–159.Google Scholar
  3. —. 1993. Causes of chiasma repatterning due to centric fusions. Rev. Brasil. Genet. 16: 283–296.Google Scholar
  4. Brandham, P. E. 1976. The frequency of spontaneous structural change. Pp. 77–87in K. Jones & P. E. Brandham (eds.), Current chromosome research. North-Holland Publishing, New York.Google Scholar
  5. —. 1983. Evolution in a stable chromosome system. Pp. 251–260in P. E. Brandham & M. D. Bennett (eds.), Kew Chromosome Conference II. Allen & Unwin, Boston.Google Scholar
  6. Brighton, C. A. 1978. Telocentric chromosomes in CorsicanCrocus L. (Iridaceae). Pl. Syst. Evol. 129: 299–314.CrossRefGoogle Scholar
  7. Caputo, P., S. Cozzolino, L. Gaudio, A. Moretti &D. W. Stevenson. 1996. Karyology and phylogeny of some Mesoamerican species ofZamia. Amer. J. Bot. 83: 1513–1520.CrossRefGoogle Scholar
  8. Cox, A. V., S. T. Bennett, A. S. Parokonny, A. Kenton, M. A. Callimassia &M. D. Bennett. 1993. Comparison of plant telomere locations using a PCR-generated synthetic probe. Ann. Bot. 72: 239–247.CrossRefGoogle Scholar
  9. —,D. G. Abdelnour, M. D. Bennett &I. J. Leitch. 1998. Genome size and karyotype evolution in the slipper orchids (Cypripedioideae: Orchidaceae). Amer. J. Bot. 85: 681–687.CrossRefGoogle Scholar
  10. —,A. M. Pridgeon, V. A. Albert &M. Chase. 1997a. Phylogenetics of the slipper orchids (Cypripedioideae: Orchidaceae). Nuclear rDNA—its sequences. Pl. Syst. Evol. 208: 197–223.CrossRefGoogle Scholar
  11. —— &M. A. T. Johnson. 1997b. Cytological characterization ofMexipedium xerophyticum (Cypripedioideae: Orchidaceae). Lindleyana 12: 162–165.Google Scholar
  12. Cribb, P. J. 1987. The genusPaphiopedilum. Collingridge, London.Google Scholar
  13. Crosa, O. 1972. Estudios cariologia en el géneroNothoscordum (Liliaceae). Bol. Fac. Agr. Uruguay 122: 3–8.Google Scholar
  14. Darlington, C. D. 1956. Chromosome botany. Allen & Unwin, London.Google Scholar
  15. Gibby, M., S. Hinnah, E. Marais &F. Alben. 1996. Cytological variation and evolution withinPelargonium sect.Hoarea (Geraniaceae). Pl. Syst. Evol. 203: 111–142.CrossRefGoogle Scholar
  16. Goldblatt, P. 1979. Chromosome cytology and karyotype change inGalaxia (Iridaceae). Pl. Syst. Evol. 133: 61–69.CrossRefGoogle Scholar
  17. —. 1980. Uneven diploid numbers and complex heterozygosity inHomeria (Tridaceae). Syst. Bot. 5: 337–340.CrossRefGoogle Scholar
  18. Hair, J. B. 1963. Cytogeographical relationships of the southern podocarps. Pp. 401–414in J. L. Gressitt et al. (eds.), Pacific basin biogeography. Bishop Museum Press, Honolulu.Google Scholar
  19. —. 1966. Biosystematics of the New Zealand flora, 1945–1964. New Zealand J. Bot. 4: 559–595.Google Scholar
  20. — &E. J. Beuzenberg. 1958a. Chromosomal evolution in the Podocarpaceae. Nature 181: 1584–1586.CrossRefGoogle Scholar
  21. — 1958b. Contributions to the chromosome atlas of the New Zealand flora 1. New Zealand J. Sci. 1958: 617–628.Google Scholar
  22. Hunt, D. R. 1980. Sections and series in Tradescantia. American Commelinaceae IX. Kew Bull. 35: 437–442.CrossRefGoogle Scholar
  23. Inariyama, S. 1932. Cytological studies of the genusLycoris 1. Conjugation of chromosomes in meiosis inL. albiflora Koidz. Bot. Mag. Tokyo 46: 426–434.Google Scholar
  24. Jackson, R. C. 1962. Interspecific hybridization inHaplopappus and its bearing on chromosome evolution in theBlepharodon section. Amer. J. Bot. 49: 119–132.CrossRefGoogle Scholar
  25. John, B. &M. Freeman. 1975. Causes and consequences of Robertsonian exchange. Chromosoma (Berlin) 52: 123–136.CrossRefGoogle Scholar
  26. Jones, K. 1974. Chromosome evolution by Robertsonian translocation inGibasis. Chromosoma (Berlin) 45: 353–368.CrossRefGoogle Scholar
  27. — 1977. The role of Robertsonian change in karyotype evolution in higher plants. Pp. 121–129in A. de la Chapelle & M. Sorsa (eds.), Chromosomes today: Proceedings of the 6th International Chromosome Conference. Oliver & Boyd, Edinburgh.Google Scholar
  28. — 1978. Aspects of chromosome evolution in higher plants. Adv. Bot. Res. 6: 120–194.Google Scholar
  29. —. 1990. Robertsonian change in alliesof Zebrina (Commelinaceae). Pl. Syst. Evol. 172: 263–271.CrossRefGoogle Scholar
  30. — &S. Bhattarai. 1981. Contributions to the cytotaxonomy of Commelinaceae.Gibasis linearis and its allies. Bot. J. Linn. Soc. 83: 141–156.CrossRefGoogle Scholar
  31. — &A. Kenton. 1984. Mechanisms of chromosome change in the evolution of the tribe Tradescantieae (Commelinaceae). Pp. 143–168in A. Sharma & A. K. Sharma (eds.), Chromosomes in evolution of eukaryotic groups. CRC Press, Florida.Google Scholar
  32. — &J. B. Smith. 1967. Chromosome evolution in the genusCrinum. Caryologia 20: 163–179.Google Scholar
  33. —,D. Papes &D. R. Hunt. 1975. Contributions to the cytotaxonomy of the Commelinaceae II. Further observations onGibasis geniculata and its allies. Bot. J. Linn. Soc. 71: 145–166.CrossRefGoogle Scholar
  34. —,A. Kenton &D. R. Hunt. 1981. Contributions to the cytotaxonomy of the Commelinaceae. Chromosome evolution inTradescantia sect.Cymbispatha. Bot. J. Linn. Soc. 83: 157–188.CrossRefGoogle Scholar
  35. Karasawa, K. 1978. Karyomorphological studies on the intraspecific variation ofPaphiopedilum insigne. La Chromosomo II-9: 233–255.Google Scholar
  36. —. 1979. Karyomorphological studies inPaphiopedilum, Orchidaceae. Bull. Hiroshima Bot. Gard. 2: 1–149.Google Scholar
  37. —. 1980. Karyomorphological studies inPhragmipedium, Orchidaceae. Bull. Hiroshima Bot. Gard. 3: 1–49.Google Scholar
  38. —. 1982. Karyomorphological studies on four species ofPaphiopedilum, Orchidaceae. Bull. Hiroshima Bot. Gard. 5: 70–79.Google Scholar
  39. —. 1986. Karyomorphological studies on nine taxa ofPaphiopedilum. Bull. Hiroshima Bot. Gard. 8: 23–42.Google Scholar
  40. — &M. Aoyama. 1986. Karyomorphological studies inCypripedium in Japan and Formosa. Bull. Hiroshima Bot. Gard. 8: 1–22.Google Scholar
  41. — &R. Tanaka. 1980. C-banding study on centric fission in the chromosomes ofPaphiopedilum. Cytologia 45: 97–102.Google Scholar
  42. Kenton, A. 1981a. Chromosome evolution in theGibasis linearis alliance. The Robertsonian differentiation of G.venustula andG. speciosa. Chromosoma (Berlin) 84: 291–304.CrossRefGoogle Scholar
  43. —. 1981b. A Robertsonian relationship in the chromosomes of two species ofHydrocleys (Butomaceae sens. lat). Kew Bull. 36: 487–492.CrossRefGoogle Scholar
  44. —. 1982. Chromosome evolution in Mexican species ofGibasis (Commelinaceae). Ph.D. thesis, Reading University, Reading, U.K.Google Scholar
  45. —. 1984. Robertsonian differentiation and preferential pairing revealed in species and F1 hybrids of theGibasis linearis group (Commelinaceae). Pl. Syst. Evol. 144: 221–240.CrossRefGoogle Scholar
  46. —,A. Davies &K. Jones. 1987. Identification of Renner complexes and duplications in permanent hybrids ofGibasis pulchella (Commelinaceae). Chromosoma (Berlin) 95: 424–434.CrossRefGoogle Scholar
  47. —,S. J. Owens &D. Langten. 1988. The origin of ring-formation and self-compatibility inGibasis pulchella (Commelinaceae). Pp. 75–84in P. E. Brandham (ed.), Kew Chromosome Conference III. Her Majesty’s Stationery Office, London.Google Scholar
  48. Khosboo, T. N. 1962. Cytogenetical evolution in the gymnosperms. Proc. Summer Sch. Bot. Darjeeling: 119–135.Google Scholar
  49. — &M. R. Ajuha. 1963. The chromosomes and relationships ofWelwitschia mirabilis. Chromosoma (Berlin) 14: 522–533.CrossRefGoogle Scholar
  50. King, M. 1993. Species evolution—the role of chromosome change. Cambridge University Press, Cambridge.Google Scholar
  51. Kokubugata, G. &K. Kondo. 1996. Differential fluorescent-banding in chromosomes of four species ofCycas (Cycadaceae). Bot. J. Linn. Soc. 120: 51–55.CrossRefGoogle Scholar
  52. Kollman, F. 1970. Karyotypes of threeAllium species of theerdelii group. Caryologia 23: 647–655.Google Scholar
  53. Kondo, K., G. Kokubugata, M. Hizume, R. Tanaka &T. Satake. 1995. A karyomorphological study of five species and one variety ofCycas. Cytologie 60: 141–147.Google Scholar
  54. Koyama, M. 1962. Meiosis inLycoris albiflora. Ann. Rep. Doshisha Women’s College 12: 9–12.Google Scholar
  55. —. 1978. Chromosome pairing in the genusLycoris II. Ann. Rep. Doshisha Women’s College 29: 272–282.Google Scholar
  56. Kurita, S. 1986. Variation and evolution in the karyotype ofLycoris I. General karyomorphological characteristics of the genus. Cytologie 51: 803–815.Google Scholar
  57. —. 1987a. Variation and evolution in the karyotype ofLycoris II. Karyotype analysis often taxa among which seven are native in China. Cytologie 52: 19–40.Google Scholar
  58. —. 1987b. Variation and evolution in the karyotype ofLycoris III. Intraspecific variation in the karyotype ofL. traubii Hayward. Cytologia 52: 117–128.Google Scholar
  59. —. 1987c. Variation and evolution in the karyotype ofLycoris IV. Intraspecific variation in the karyotype ofL. radiata (L’Herit.) Herb, and the origin of this triploid species. Cytologie 52: 137–149.Google Scholar
  60. —. 1988a. Variation end evolution in the karyotype ofLycoris VI. Intrapopulational and/or intraspecific variation in the karyotype ofL. sanguinea Maxim, var.kiushiana Makino and ver.koreana (Nakai) Koyeme. Cytologie 53: 307–321.Google Scholar
  61. —. 1988b. Variation and evolution in the keryotypeof Lycoris VII. Modes of karyotype elteretion within species end probable trend of karyotype evolution in the genus. Cytologie 53: 323–335.Google Scholar
  62. Kyhos, D. W. 1965. The independent aneuploid origin of two species ofChaenactis (Compositae) from a common ancestor. Evolution 19: 26–43.CrossRefGoogle Scholar
  63. Levan, A. &S. Emsweller. 1938. Structurel hybridity inNothoscordum fragrans. J. Hered. 29: 291–294.Google Scholar
  64. —,K. Fredga &A. A. Sandberg. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.Google Scholar
  65. Marchant, C. J. 1968. Chromosome patterns and nuclear phenomena in the cycad families Stangeriaceae and Zamieceae. Chromosome (Berlin) 24: 100–134.CrossRefGoogle Scholar
  66. Mattsson, O. 1971. Cytologicel observations within the genusZebrina. Bot. Tidsskr. 66: 189–227.Google Scholar
  67. Maxted, N., M. A. Callimassia &M. D. Bennett. 1991. Cytotaxonomic studies of eastern MediterraneenVicia species (Leguminosae). Pl. Syst. Evol. 177: 221–234.CrossRefGoogle Scholar
  68. Moretti, A. 1990a. Karyotypic data on North end Central American Zamiaceae (Cycedales) and their phylogenetic implications. Amer. J. Bot. 77: 1016–1029.CrossRefGoogle Scholar
  69. —. 1990b. Cytotaxonomy of cycads. Mem. New York Bot. Gard. 57: 114–122.Google Scholar
  70. — &S. Sabato. 1984. Karyotype evolution by centromeric fission inZamia (Cycadeles). Pl. Syst. Evol. 146: 215–233.CrossRefGoogle Scholar
  71. —,P. Caputo, L. Gaudio &D. W. Stevenson. 1991. Intraspecific chromosome variation inZamia (Zamiaceae, Cycadales). Caryologia 44: 1–10.Google Scholar
  72. Moscone, A., M. Lambrou, A. T. Hunziker &F. Ehrendorfer. 1993. Giemsa C-banded karyotypes inCapsicum (Solanaceae). Pl. Syst. Evol. 186: 213–229.CrossRefGoogle Scholar
  73. Norstog, K. 1980. Chromosome numbers inZamia. Caryologia 33: 419–428.Google Scholar
  74. —. 1981. Karyotypes ofZamia chigua (Cycedeles). Ceryologia 34: 255–260.Google Scholar
  75. Nuflez, O. 1990. Evolucion ceriotfpicaen el géneroNothoscordum. Acad. Nac. Ca. Ex. Fis. Net., Buenos Aires. Monogr. 5: 55–61.Google Scholar
  76. —,N. Frayssinet &R. Rodriguez. 1972. Los cromosomas deNothoscordum Kunth (Liliaceae). Darwinia 17: 243–245.Google Scholar
  77. ——— &K. Jones. 1974. Cytogenetic studies in the genusNothoscordum Kunth. I. TheN. inodorum polyploid complex. Caryologia 23: 235–254.Google Scholar
  78. Parker, J. S. 1987. Increased chiasma frequency as a result of chromosome rearrangement. Heredity 58: 87–94.Google Scholar
  79. —,A. S. Wilby &S. Taylor. 1988. Chromosome stability and instability in plants. Pp. 131–140in P. E. Brandham (ed.), Kew Chromosome Conference III. Her Majesty’s Stationery Office, London.Google Scholar
  80. Redi, C. A., S. Garagna &E. Cappana. 1990. Nature’s experiment within situ hybridization? A hypothesis for the mechanism of Rb fusion. J. Evol. Biol. 3: 133–137.CrossRefGoogle Scholar
  81. Rousi, A. 1961. Cytotaxonomical studies onVicia cracca L. andV. tenuifolia Roth. Hereditas 47: 81–110.CrossRefGoogle Scholar
  82. Sax, K. &J. M. Beale. 1934. Chromosomes of the Cycadales. J. Arnold Arb. 15: 255–258.Google Scholar
  83. Schubert, I. &R. Reiger. 1990. Alteration by centric fission of the diploid number inVicia faba L. Genetica 81: 67–69.CrossRefGoogle Scholar
  84. Stone, D. E. &J. L. Freeman. 1968. Cytotaxonomy ofIllicium floridanum andI. parviflorum (Illiceaceae). J. Arnold Arb. 49: 41–51.Google Scholar
  85. Strid, A. 1968. Stable telocentric chromosomes formed by spontaneous misdivision inNigella doerfleri. Bot. Not. 121: 153–164.Google Scholar
  86. Vovides, A. P. 1983. Systematic studies on the MexicanZamiaceae. I. Chromosome numbers and karyotypes. Amer. J. Bot. 70: 1002–1006.CrossRefGoogle Scholar
  87. — &M. Olivares. 1996. Karyotype polymorphism in the cycadlamia loddigesii (Zamiaceae) of the Yucatan peninsula, Mexico. Bot. J. Linn. Soc. 120: 77–83.CrossRefGoogle Scholar
  88. Weins, D. &B. A. Barlow. 1975. Permanent translocation heterozygosity and sex determination in East African mistletoes. Science 187: 1208–1209.CrossRefGoogle Scholar
  89. Werner, J. E., R. S. Kota, B. S. Gill &T. R. Endo. 1992. Distribution of telomeric repeats and their role in the healing of broken chromosome ends in wheat. Genome 35: 844–848.Google Scholar
  90. White, M. J. D. 1945. Animal cytology and evolution. Ed. 1. Cambridge University Press, Cambridge.Google Scholar
  91. —. 1973. Animal cytology and evolution. Ed. 3. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© The New York Botanical Garden 1998

Authors and Affiliations

  • Keith Jones
    • 1
  1. 1.Jodrell LaboratoryRoyal Botanic GardensRichmondUK

Personalised recommendations