The Botanical Review

, Volume 65, Issue 1, pp 39–75

Pollen dispersal models in Quaternary plant ecology: Assumptions, parameters, and prescriptions

  • Stephen T. Jackson
  • Mark E. Lyford
Article

Abstract

Models of atmospheric dispersal of anemophilous pollen are important tools in Quaternary plant ecology for determining pollen-source areas and for applying distance-weightings to vegetation data in formal pollen-vegetation calibrations. The most widely applied model is Prentice’s model, which uses a modified form of Sutton’s equation for atmospheric diffusion to predict pollen-source areas from size of the depositional basin and a set of depositional parameters (deposition velocity of the pollen grains and mean wind speed) and atmospheric parameters (turbulence parameter, vertical diffusion coefficient). We review the physical theory underlying Sutton’s equation and Prentice’s model, explore the effects of different values of the depositional and atmospheric parameters on model predictions, and provide prescriptions for model application, parameter specification, and further research on pollen dispersal. Most applications of the models to pollen dispersal have assumed neutral atmospheric conditions. We argue that most pollen dispersal takes place in unstable atmospheric conditions, and prescribe appropriate values for the atmospheric parameters for unstable conditions. Our simulations using these parameters indicate more widespread pollen dispersal from a source than under neutral conditions. We review available data sets for sedimentation velocity of pollen grains, and compare the measured estimates with sedimentation velocities predicted from Stokes’s Law to assess validity of the data. Substantial variability exists among data sets, but several are suitable for application to pollen-dispersal models. Finally, we discuss aspects of release, dispersal, and deposition of anemophilous pollen that are in need of further theoretical and empirical study. Such studies will contribute not only to Quaternary plant ecology but also to understanding of pollination biology, population genetics, and functional morphology of pollen grains and pollen-bearing organs.

Zusammenfassung

Modelle für die atmosphärische Verteilung windverbreiteten Pollens sind wichtige Werkzeuge der Quartär-Pflanzenökologie zur Bestimmung von Polleneinzugsgebieten und um bei der mathematischen Kalibrierung des Zusammenhangs zwischen Pollen und Vegetation die Gewichtung von Entfernungen auf Vegetationsdaten anzuwenden. Das am häufigsten angewendente Modell ist das von Prentice, das eine angepaßte Form von Suttons Gleichung für atmosphärische Diffusion benutzt um Polleneinzugsgebiete auf Grundlage der Größe des Ablagerungsbeckens und einer Reihe von Ablagerungsparametern (Sinkgeschwindigkeit, vertikaler Diffusionskoeffizient) vorauszusagen. Wir besprechen die physikalische Theorie, die hinter Suttons und Prentices Modell steht, untersuchen, welchen Einfluß Ablagerungsparameter unterschiedler Größe sowie die atmosphärischen Parameter auf die Modellvorhersagen haben und geben Empfehlungen für die Anwendung der Modelle, Spezifizierung der Parameter und weiterführende Forschung zur Pollenverbreitung. Die meisten Anwendungen von Modellen zur Pollenausbreitung gehen von neutraler thermischer Schichtung aus. Wir erörtern, daßein Großteil der Pollenablagerung unter unstabilen Schichtungsverhältnissen stattfindet und beschreiben angemessene Werte für die atmosphärischen Parameter unter unstabilen Schichtungsverhältnissen. Unsere Simulationen, die diese Parameter benutzen, deuten darauf hin, daß eine weitere Pollenausbreitung von der Quelle aus stattfindet als bei neutraler Schichtung. Wir überprüfen verfügbare Datensätze zur Sinkgeschwindigkeit von Pollenkörnern und vergleichen die gemessenen Werte mit den Fallgeschwindigkeiten, die von Stokes Gesetz vorhergesagt werden, um die Richtigkeit der Daten zu beurteilen. Zwischen den Datensätzen bestehen beträchtlichte Unterschiede, aber einige sind für die Anwendung auf Pollenausbreitungs-Modelle geignet. Scließlich diskutieren wir die Aspekte der Freisetzung, Verbreitung und Ablagernug windverbreiteten Pollens, welche weitergehender theoretischer und empirischer Untersuchung bedürfen. Solche Untersuchungen werden nicht nur zur Quartär-Pflanzenökologie, sondern auch zum Verständnis von Bestäubungsbiologie, Populationsgenetik und funktioneller Morphologie von Pollenkörnern und pollentragenden Organen beitragen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Andersen, S. Th. 1970. The relative pollen productivity and pollen representation of north European trees, and correction factors for tree pollen spectra determined by surface pollen analyses from forests. Danmarks Geol. Undersøl., ser. II, 96: 1–199.Google Scholar
  2. Aylor, D. E. 1975. Deposition of particles in a plant canopy. J. Appl. Meteorol. 14: 52–57.CrossRefGoogle Scholar
  3. —. 1978. Dispersal in space and time: aerial pathogens. Pages 159–180in J.G. Horsfall & E.B. Cowling (eds.), Plant disease: an advanced treatise. Volume 2: How disease develops in populations. Academic Press, New York.Google Scholar
  4. —. 1982. Modeling spore dispersal in a barley crop. Agric. Meteorol. 26: 215–219.CrossRefGoogle Scholar
  5. —. 1987. Deposition gradients of urediniospores ofPuccinia recondita near a source. Phytopathology 77: 1442–1448.CrossRefGoogle Scholar
  6. —. 1989. Aerial spore dispersal close to a focus of disease. Agric. Forest Meteorol. 47: 109–122.CrossRefGoogle Scholar
  7. —. 1990. The role of intermittent wind in the dispersal of fungal pathogens. Ann. Rev. Phytopathol. 28: 73–92.CrossRefGoogle Scholar
  8. — &F. J. Ferrandino. 1989. Dispersion of spores released from an elevated line source within a wheat canopy. Boundary-Layer Meteorol. 46: 251–273.CrossRefGoogle Scholar
  9. — &J.-Y. Parlange. 1975. Ventilation required to entrain small particles from leaves. Pl. Physiol. 56: 97–99.Google Scholar
  10. —,H. A. McCartney &A. Bainbridge. 1981. Deposition of particles liberated in gusts of wind. J. Appl. Meteorol. 20: 1212–1221.CrossRefGoogle Scholar
  11. Barad, L. & J. J. Fuquay. 1962. The Green Glow Diffusion Program. Geophysical Research Paper no. 73, Air Force Cambridge Research Laboratory, U.S. Atomic Energy Commission Hanford Report HW-71400.Google Scholar
  12. Bianchi, D. E., D. J. Schwemmin &W. H. Wagner Jr. 1959. Pollen release in the common ragweed (Ambrosia artemisiifolia). Bot. Gaz. 120: 235–243.CrossRefGoogle Scholar
  13. Blackmore S. &S. H. Barnes. 1986. Harmomegathic mechanisms in pollen grains. Pages 137–149in S. Blackmore & I. K. Ferguson (eds.), Pollen and spores: form and function. Academic Press, London.Google Scholar
  14. Bodmer, H. 1922. Über den Windpollen. Natur & Techn. 3: 294–298.Google Scholar
  15. Boyer, W. D. 1966. Longleaf pine pollen dispersal. Forest Sci. 12: 367–368.Google Scholar
  16. Brush, G. S. &L. M. Brush. 1972. Transport of pollen in a sediment-laden channel: a laboratory study. Amer. J. Sci. 272: 359–381.CrossRefGoogle Scholar
  17. ——. 1994. Transport and deposition of pollen in an estuary: signature of the landscape. Pages 33–46in A. Traverse (ed.), Sedimentation of organic particles. Cambridge University Press, Cambridge.Google Scholar
  18. Buell, M. F. 1947. Mass dissemination of pine pollen. J. Elisha Mitchell Sci. Soc. 63: 163–167.Google Scholar
  19. Burrows, F. M. 1975. Calculation of primary trajectories of dust seeds, spores and pollen in unsteady wind. New Phytol. 75: 389–403.CrossRefGoogle Scholar
  20. Calcote, R. 1995. Pollen source area and pollen productivity: evidence from forest hollows. J. Ecol. 83: 591–602.CrossRefGoogle Scholar
  21. Carter, M. V. 1965. Ascospore deposition inEutypa armeniacae. Austral. J. Agric. Res. 16: 825–836.CrossRefGoogle Scholar
  22. Chamberlain, A. C. 1953. Aspects of travel and deposition of aerosol and vapour clouds. Atomic Energy Research Establishment Report HP/R 1261. Harwell, England.Google Scholar
  23. —. 1967a. Deposition of particles to natural surfaces. Pages 138–164in P. H. Gregory & J. L. Monteith (eds.), Airborne microbes. Cambridge University Press, London.Google Scholar
  24. —. 1967b. Transport ofLycopodium spores and other small particles to rough surfaces. Proc. Roy Soc. A 296: 45–70.CrossRefGoogle Scholar
  25. —. 1975. The movement of particles in plant communities. Pages 155–203in J. L. Monteith (ed.), Vegetation and the atmosphere. Volume 1. Academic Press, New York.Google Scholar
  26. — &R. C. Chadwick. 1972. Deposition of spores and other particles on vegetation and soil. Ann. Appl. Biol. 71: 141–158.CrossRefGoogle Scholar
  27. — &P. Little. 1981. Transport and capture of particles by vegetation. Pages 147–173in J. Grace etal. (eds.), Plants and their atmospheric environments. Blackwells, Oxford.Google Scholar
  28. Colwell, R. N. 1951. The use of radioactive isotopes in determining spore distribution patterns. Amer. J. Bot. 38:511–523.CrossRefGoogle Scholar
  29. Crane, P. R. 1986. Form and function in wind dispersed pollen. Pages 179–202in S. Blackmore & I. K. Ferguson (eds.), Pollen and spores: form and function. Academic Press, London.Google Scholar
  30. Curtis, J. D. &N. R. Lersten. 1995. Anatomical aspects of pollen release from staminate flowers ofAmbrosia trifida (Asteraceae). Intl. J. Pl. Sci. 156: 29–36.CrossRefGoogle Scholar
  31. Davis, M. B. 1963. On the theory of pollen analysis. Amer. J. Sci. 261: 897–912.CrossRefGoogle Scholar
  32. Di-Giovanni, F., P. G. Kevan &M. E. Nasr. 1995. The variability in settling velocities of some pollen and spores. Grana 34: 39–44.Google Scholar
  33. Durham, O. C. 1943. The volumetric incidence of atmospheric allergens. I. Specific gravity of pollen grains. J. Allergy 14: 455–461.CrossRefGoogle Scholar
  34. —. 1946. The volumetric incidence of atmospheric allergens. III. Rate of fall of pollen grains in still air. J. Allergy 17: 70–78.CrossRefGoogle Scholar
  35. Dyakowska, J. 1936. Researches on the rapidity of the falling down of pollen of some trees. Bull. Acad Polon. Sci. Bl: 155–168.Google Scholar
  36. — &J. Zurzycki. 1959. Gravimetric studies on pollen. Bull. Acad. Polon. Sci. 7: 11–16.Google Scholar
  37. Ebell, L. F. &R. L. Schmidt. 1964. Meteorological factors affecting conifer pollen dispersal on Vancouver Island. Department of Forestry Publication no. 1036. Ottawa, Department of Forestry.Google Scholar
  38. Eisenhut, G. 1961. Untersuchungen über die Morphologie und Ökologie der Pollenkörner heimischer und fremdländischer Waldbäume. Forstwiss. Forsch. 15: 1–68.Google Scholar
  39. Fægri, K &L. van der Pijl. 1979. The principles of pollination ecology. Ed. 3. Pergamon Press, Oxford.Google Scholar
  40. Ferrandino, F. J. &D. E. Aylor. 1984. Settling speed of clusters of spores. Phytopathology 74: 969–972.CrossRefGoogle Scholar
  41. Gifford, F. A., Jr. 1968. An outline of theories of diffusion in the lower layers of the atmosphere. Pages 65–116in D. H. Slade (ed.), Meteorology and atomic energy. U.S. Atomic Energy Commission, Oak Ridge, Tennessee.Google Scholar
  42. —. 1976. Turbulent diffusion typing schemes—a review. Nuclear Safety 17: 68–86.Google Scholar
  43. Grace, J &M. A. Collins. 1976. Spore liberation from leaves by wind. Pages 185–198in C. H. Dickinson & T. F. Preece (eds.), Microbiology of aerial plant surfaces. Academic Press, London.Google Scholar
  44. Gregory, P. H. 1973. The microbiology of the atmosphere. Ed. 2. Leonard Hill, Aylesbury.Google Scholar
  45. Hanna, S. R., G. A. Briggs &R. P. Hosker Jr. 1982. Handbook on atmospheric diffusion. DOE/TIC-11223. U.S. Department of Energy, Springfield, VA.Google Scholar
  46. Harrington, J. B., Jr. &K. Metzger. 1963. Ragweed pollen density. Amer. J. Bot. 50: 532–539.CrossRefGoogle Scholar
  47. Heathcote, I. W. 1978. Differential pollen deposition and water circulation in small Minnesota lakes. Ph.D. thesis, Yale University, New Haven.Google Scholar
  48. Heslop-Harrison, J. 1979. An interpretation of the hydrodynamics of pollen. Amer. J. Bot. 66: 737–743.CrossRefGoogle Scholar
  49. Hesse, M. 1981. The fine structure of the exine in relation to the stickiness of angiosperm pollen. Rev. Palaeobot. Palynol. 35: 81–92.CrossRefGoogle Scholar
  50. Islitzer, N. F. &D. H. Slade. 1968. Diffusion and transport experiments. Pages 117–188in D. H. Slade (ed.), Meteorology and atomic energy. TID-24190. U.S. Atomic Energy Commission, Oak Ridge, TN.Google Scholar
  51. Jackson, S. T. 1990. Pollen source area and representation in small lakes of the northeastern United States. Rev. Palaeobot. Palynol. 63: 53–76.CrossRefGoogle Scholar
  52. —. 1991. Pollen representation of vegetational patterns along an elevational gradient. J. Veg. Sci. 2: 613–624.CrossRefGoogle Scholar
  53. —. 1994. Pollen and spores in Quaternary lake sediments as sensors of vegetation composition: theoretical models and empirical evidence. Pages 253–286in A. Traverse (ed.), Sedimentation of organic particles. Cambridge University Press, Cambridge.Google Scholar
  54. — &J. B. Kearsley. 1998. Representation of local forest composition in moss-polster pollen assemblages. J. Ecol. 86: 474–490.CrossRefGoogle Scholar
  55. — &A. Wong. 1994. Using forest patchiness to determine pollen source areas of closed-canopy pollen assemblages. J. Ecol. 82: 89–100.Google Scholar
  56. Jacobson, G. L., Jr. &R. H. W. Bradshaw. 1981. The selection of sites for paleovegetational studies. Quatem. Res. 16: 80–96.CrossRefGoogle Scholar
  57. Kabailiene, M. V. 1969. On formation of pollen spectra and restoration of vegetation. Trans. Inst. Geol. Vilnius 11: 1–148.Google Scholar
  58. Knoll, F. 1932. Über die Fernverbreitung des Blütenstaubes durch den Wind. Forschungen und Forstschriffte: Nachrichtenbl. Deutsch. Wiss. Tech. 8: 301–302.Google Scholar
  59. Koski, V. 1970. A study of pollen dispersal as a mechanism of gene flow in conifers. Commun. Inst. Forest. Fenniae 70.4: 1–78.Google Scholar
  60. Legg, B. J. 1983. Movement of plant pathogens in the crop canopy. Phil. Trans., Ser. B 302: 559–574.CrossRefGoogle Scholar
  61. — &R. I. Price. 1980. The contribution of sedimentation to aerosol deposition to vegetation with a large leaf area index. Atmosph. Environm. 14: 305–309.CrossRefGoogle Scholar
  62. Little, P. 1977. Deposition of 2.75, 5.0 and 8.5 μm particles to plant and soil surfaces. Environm. Pollut. 12: 293–305.CrossRefGoogle Scholar
  63. Lovett, G. M. 1981. Forest structure and atmospheric interactions: predictive models for subalpine fir forests. Ph.D. thesis, Dartmouth College, Hanover.Google Scholar
  64. — &W. A. Reiners. 1986. Canopy structure and cloud water deposition in subalpine coniferous forests. Tellus 38B: 319–327.CrossRefGoogle Scholar
  65. McCartney, H. A. &B. D. L. Fitt. 1985. Construction of dispersal models. Pages 107–143in C. A. Gilligan (ed.), Advances in plant pathology. Volume 3. Mathematical modeling of crop disease. Academic Press, London.Google Scholar
  66. McNown, J. S. &J. Malaika. 1950. Effects of particle shape on settling velocity at low Reynolds numbers. Amer. Geophys. Union Trans. 31: 74–82.Google Scholar
  67. -, -& H. R. Pramanik. 1951. Particle shape and settling velocity. Intl. Assoc. Hydraulic Res., Fourth Meeting, pp. 511–522.Google Scholar
  68. Niklas, K. J. 1982. Simulated and empiric wind pollination patterns of conifer ovulate cones. Proc. Natl. Acad. Sci. U.S.A. 79: 510–514.PubMedCrossRefGoogle Scholar
  69. —. 1984. The motion of windborne pollen grains around conifer ovulate cones: implications on wind pollination. Amer. J. Bot. 71: 356–374.CrossRefGoogle Scholar
  70. —. 1985. The aerodynamics of wind pollination. Bot. Rev. (Lancaster) 51: 328–386.Google Scholar
  71. — &K. T. Paw U. 1983. Conifer ovulate cone morphology: implications on pollen impaction patterns. Amer. J. Bot. 70: 568–577.CrossRefGoogle Scholar
  72. Pande, G. K., R. Pakrash &M. A. Hassam. 1972. Floral biology of barley (Hordeum vulgare L). Indian J. Agric. Sci. 48: 697–703.Google Scholar
  73. Pasquill, F. &F. B. Smith. 1983. Atmospheric diffusion. Ed. 3. Ellis Horwood Limited, Chichester.Google Scholar
  74. Payne, W. W. 1972. Observations of harmomegathy in pollen of Anthophyta. Grana 12: 93–98.CrossRefGoogle Scholar
  75. —. 1981. Structure and function in angiosperm pollen wall evolution. Rev. Palaeobot. Palynol. 35: 39–59.CrossRefGoogle Scholar
  76. Prentice, I. C. 1985. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quatern. Res. 23: 76–86.CrossRefGoogle Scholar
  77. —. 1986. Forest-composition calibration of pollen data. Pages 799–816in B. Berglund (ed.), Hand-book of Holocene palaeoecology and palaeohydrology. John Wiley & Sons, Chichester.Google Scholar
  78. —. 1988. Records of vegetation in space and time: the principles of pollen analysis. Pages 17–42in B. Huntley & T. WebbIII (eds.), Vegetation history. Kluwer Academic, Dordrecht.Google Scholar
  79. Raynor, G. S. 1971. Wind and temperature structure in a coniferous forest and a contiguous field. Forest Sci. 17:351–363.Google Scholar
  80. —,J. V. Hayes &E. C. Ogden. 1974. Particulate dispersion into and within a forest. Boundary-Layer Meteorol. 7: 429–456.CrossRefGoogle Scholar
  81. ———. 1975. Particulate dispersion from sources within a forest. Boundary-Layer Meteorol. 9: 257–277.CrossRefGoogle Scholar
  82. Sarvas, R. 1952. On the flowering of birch and the quality of seed crop. Commun. Inst. Forest. Fenniae 40.7: 1–38.Google Scholar
  83. —. 1962. Investigations on the flowering and seed crop ofPinus sylvestris. Commun. Inst. Forest. Fenniae 53.4: 1–198.Google Scholar
  84. —. 1968. Investigations on the flowering and seed crop ofPicea abies. Commun. Inst. Forest. Fenniae 67.5: 1–84.Google Scholar
  85. Sehmel, G. A. 1980. Particle and gas dry deposition: a review. Atmosph. Environm. 14: 983–1011.CrossRefGoogle Scholar
  86. Sharp, W. M. &H. H. Chisman. 1961. Flowering and fruiting in the white oaks. I. Staminate flowering through pollen dispersal. Ecology 42: 365–372.CrossRefGoogle Scholar
  87. Silen, R. R. 1962. Pollen dispersal considerations for Douglas-fir. J. Forest. 60: 790–795.Google Scholar
  88. Singer, I. A. &M. E. Smith. 1953. Relation of gustiness to other meteorological parameters. J. Meteorol. 10: 121–126.Google Scholar
  89. ——. 1966. Atmospheric dispersion at Brookhaven National Laboratory. Intl. J. Air & Water Pollut. 10: 125–135.Google Scholar
  90. Starr, J. R. 1967. Deposition of particulate matter by hydrometeors. Quart. J. Roy. Meteorol. Soc. 93: 516–521.CrossRefGoogle Scholar
  91. Stewart, N. G., H. J. Gale &R. N. Crooks. 1958. The atmospheric diffusion of gases discharged from the chimney of the Harwell Reactor BEPO. Intl. J. Air Pollut. 1: 87–102.Google Scholar
  92. Sugita, S. 1993. A model of pollen source area for an entire lake surface. Quatern. Res. 39: 239–244.CrossRefGoogle Scholar
  93. —. 1994. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J. Ecol. 82: 881–897.CrossRefGoogle Scholar
  94. Sutton, O. G. 1947a. The problem of diffusion in the lower atmosphere. Quart. J. Roy. Meterol. Soc. 73: 257–281.CrossRefGoogle Scholar
  95. —. 1947b. The theoretical distribution of airborne pollution from factory chimneys. Quart. J. Roy. Meterol. Soc. 73: 426–436.CrossRefGoogle Scholar
  96. —. 1953. Micrometeorology. McGraw-Hill, New York.Google Scholar
  97. Tauber, H. 1965. Differential pollen dispersion and the interpretation of pollen diagrams. Danmarks Geol. Undersøl., Række 2, Number 89.Google Scholar
  98. Thorne, P. G., G. M. Lovett &W. A. Reiners. 1982. Experimental determination of droplet impaction on canopy components of balsam fir. J. Appl. Meteorol. 21: 1413–1416.CrossRefGoogle Scholar
  99. Tomlinson, P. B. 1994. Functional morphology of saccate pollen in conifers with special reference to Podocarpaceae. Intl. J. Pl. Sci. 155: 699–715.CrossRefGoogle Scholar
  100. Tonsor, S. J. 1985. Leptokurtic pollen-flow, non-leptokurtic gene flow in a wind-pollinated herb,Plantago lanceolata L. Oecologia 67: 442–446.CrossRefGoogle Scholar
  101. Vogel, S. 1981. Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton.Google Scholar
  102. Wang, C.-W., T. O. Perry &A. G. Johnson. 1960. Pollen dispersal of slash pine (Pinus elliottii Engelm.) with special reference to seed orchard management. Silvae Genet. 9: 78–86.Google Scholar
  103. Whitehead, D. R. 1964. Fossil pine pollen and full-glacial vegetation in southeastern North Carolina. Ecology 45: 767–777.CrossRefGoogle Scholar
  104. —. 1983. Wind pollination: some ecological and evolutionary perspectives. Pages 97–108in L. Real (ed.), Pollination biology. Academic Press, New York.Google Scholar
  105. Wright, J. W. 1952. Pollen dispersion of some forest trees. United States Forest Service, Northeastern Forest Experiment Station Paper 60.Google Scholar

Copyright information

© The New York Botanical Garden 1999

Authors and Affiliations

  • Stephen T. Jackson
    • 1
  • Mark E. Lyford
    • 1
  1. 1.Department of Botany Aven Nelson BuildingUniversity of WyomingLaramieUSA

Personalised recommendations