American Journal of Potato Research

, Volume 80, Issue 4, pp 271–279 | Cite as

The effect of climate change on global potato production



The effect of climate change on global potato production was assessed. Potential yields were calculated with a simulation model and a grid with monthly climate data for current (1961–1990) and projected (2010–2039 and 2040–2069) conditions. The results were mapped and summarized for countries. Between 1961–1990 and 2040–2069 the global (terrestrial excluding Antarctica) average temperature is predicted to increase between 2.1 and 3.2 C, depending on the climate scenario. The temperature increase is smaller when changes are weighted by the potato area and particularly when adaptation of planting time and cultivars is considered (a predicted temperature increase between 1 and 1.4 C). For this period, global potential potato yield decreases by 18% to 32% (without adaptation) and by 9% to 18% (with adaptation). At high latitudes, global warming will likely lead to changes in the time of planting, the use of later-maturing cultivars, and a shift of the location of potato production. In many of these regions, changes in potato yield are likely to be relatively small, and sometimes positive. Shifting planting time or location is less feasible at lower latitudes, and in these regions global warming could have a strong negative effect on potato production. It is shown that heat-tolerant potato cultivars could be used to mitigate effects of global warming in (sub)tropical regions.

Additional Key Words

Adaptation heat tolerance geographic information systems GIS potential yield simulation Solanum tuberosum 


Se estudió el efecto del cambio climático en la producción global de la patata. Los rendimientos potenciales fueron calculados con un modelo de simulación y una rejilla con datos mensuales de clima para las condiciones actuates (1961–1990) y proyectadas (2010–2039 y 2040–2069). Los resultados fueron presentados en mapas y resumidos por paises. Se predice que entre 1961–1990 y 2040–2069 la temperatura media global (en áreas terrestres excepto la Antártica) aumentará entre 2.1 y 3.2 C, dependiendo del escenario climático. El aumento de la temperatura es más pequeño cuando los cambios son ponderados con el área del cultivo de la patata y particularmente cuando se considera la adaptación de la época de siembra y de los cultivares (se predice un aumento de la temperatura entre 1 y 1.4 C). En este período, la producción potencial global de la patata disminuye de 18% al 32% (sin adaptación) y de 9% al 18% (con adaptación). En latitudes mayores, el calentamiento global podría conducir a cambios en la época de siembra, el uso de cultivares más tardíos, y cambio de los lugares donde se produce patata. En muchas de estas regiones, los cambios en la producción de la patata serían relativamente pequeños, y a veces positivo Los cambios en la época de siembra o de los lugares de producción son menos factibles en latitudes más bajas, en estas regiones el calentamiento global podría tener un fuerte efecto negativo en la producción de la patata. Se muestra que se podrian utilizar cultivares con tolerancia al calor para atenuar el efecto del calentamiento global en regiones (sub)tropicales.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Carter TR, RA Saarikko, and KJ Niemi. 1996. Assessing the risks and uncertainties of regional crop potential under a changing climate in Finland. Agr Food Sci Finland 5:329–350.Google Scholar
  2. Davies A, T Jenkins, A Pike, J Shaq, I Carson, CJ Pollock, and MI Parry. 1996. Modelling the predicted geographic and economic response of UK cropping systems to climate change scenarios: the case of potatoes. Aspects Appl Biol 45:63–69.Google Scholar
  3. De Temmerman L, M Bindi, J Craigon, A Fangmeier, A Hacour, H Pleijel, K Vandermeiren, V Vorne, and J Wolf. 2000. Changing Climate and Potential Impacts on Potato Yield and Quality. Veterinary and Agrochemical Research Centre, Tervuren, Belgium.Google Scholar
  4. Ewing EE, and PC Struik. 1992. Tuber formation in potato: induction, initiation and growth. Hort Rev 14:89–198.Google Scholar
  5. Haverkort AJ. 1990. Ecology of potato cropping systems in relation to latitude and altitude. Agr Syst 32:251–272.CrossRefGoogle Scholar
  6. Hijmans RJ. 2001. Global distribution of the potato crop. Am J Potato Res 78:403–412.CrossRefGoogle Scholar
  7. Hijmans RJ, B Condori, R Carillo, and MJ Kropff. 2003. A quantitative and constraint-specific method to assess the potential impact of new agricultural technology: the case of frost resistant potato for the Altiplano (Peru and Bolivia). Agr Syst. 76: 8g5-g11.CrossRefGoogle Scholar
  8. Houghton JT, Y Ding, DJ Griggs, M Noguer, PJ van der Linden, D Xiaosu, K Maskell, and CA Johnson (eds). 2001. Climate Change 2001. The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UKGoogle Scholar
  9. Intergovernmental Panel on Climate Change Data Distribution Center. 1999. Providing climate change and related scenarios for impact assessment. CD-ROM. Version 1.0. Climate Research Unit, University of East Anglia, Norwich, UK.Google Scholar
  10. Jeffree CE, and EP Jeffree. 1996. Redistribution of the potential geographical ranges of mistletoe and Colorado beetle in Europe in response to the temperature component of climate change. Funct Ecol 10(5): 562–577.CrossRefGoogle Scholar
  11. Khanna ML. 1966. Breeding potato cultivars tolerant to higher thermoperiods. Current Sci 35(6): 143–144.Google Scholar
  12. Kaukoranta T. 1996. Impact of global warming on potato late blight: Risk, yield loss and control. Agr Food Sci Finland 5:311–327.Google Scholar
  13. Kooman PL. 1995. Yielding ability of potato crops as influenced by temperature and daylenght. PhD thesis, Wageningen Agricultural University. Wageningen, Netherlands.Google Scholar
  14. Kooman PL, and AJ Haverkort. 1995. Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO.In: AJ Haverkort and DKL MacKerron (eds), Potato Ecology and Modeling of Crops under Conditions Limiting Growth. Kluwer Academic Publishers, Dordrecht, Netherlands. pp. 41–60.Google Scholar
  15. Leemans R, and AM Solomon. 1993. Modeling the potential change in yield and distribution of the Earth’s crops under a warmed climate. Climate Res 3:79–96.CrossRefGoogle Scholar
  16. Levy D. 1984. CultivatedSolanum tuberosum L. as a source for the selection of cultivars adapted to hot climates. Trop Agr 61(3): 167–170.Google Scholar
  17. McCarthy JJ, OF Canziani, NA Leary, DJ Dokken, and KS White, 2001. Climate Change 2001. Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UKGoogle Scholar
  18. Miglietta F, V Magliulo, M Bindi, L Cerio, FP Vaccari, V Loduca, and A Peressotti. 1998. Free air CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. Global Change Biol 4:163–172.CrossRefGoogle Scholar
  19. New M, M Huhne, and P Jones. 1999. Representing twentieth-century space-time climate variability. Part I: development of a 1961–1990 mean monthly terrestrial climatology. J Climate 12:829–856CrossRefGoogle Scholar
  20. Nonhebel S. 1993. The importance of weather data in crop growth simulation models and assessment of climatic change effects. Ph.D. thesis, Wageningen Agricultural University, Wageningen, Netherlands.Google Scholar
  21. Peiris DR, JW Crawford, C Grashoff, RA Jefferies, JR Porter, and B Marshall. 1996. A simulation study of crop growth and development under climate change. Agr For Meteorol 79:271–287.CrossRefGoogle Scholar
  22. Reynolds MP, and EE Ewing. 1989a. Effects of high air and soil temperature stress on growth and tuberization inSolanum tuberosum. Ann Bot 64(3): 241–247.Google Scholar
  23. Reynolds MP, and EE Ewing. 1989b. Heat tolerance in tuber bearingSolanum species: A protocol for screening. Am Potato J 66(2): 63–74.Google Scholar
  24. Rosenzweig C, and D Hillel. 1998. Climate Change and the Global Harvest: Potential Impacts of the Greenhouse Effect on Agriculture. Oxford University Press, New York.Google Scholar
  25. Rosenzweig C, and D Liverman. 1992. Predicted effects of climate change on agriculture: A comparison of temperate and tropical regions.In: SK Majumdar (ed), Global Climate Change: Implications, Challenges, and Mitigation Measures. The Pennsylvania Academy of Sciences, Philadelphia. pp. 342–61.Google Scholar
  26. Rosenzweig C, and ML Parry. 1994. Potential impact of climate change on world food supply. Nature 367:133–138.CrossRefGoogle Scholar
  27. Rosenzweig C, J Phillips, R Goldberg, J Carroll, and T Hodges. 1996. Potential impacts of climate change on citrus and potato production in the US. Agr Syst 52(4): 455–479.CrossRefGoogle Scholar
  28. Scott GJ, MW Rosegrant, and C Ringler. 2000. Global projections for root and tuber crops to the year 2020. Food Policy 25(5): 561–597.CrossRefGoogle Scholar
  29. Stol W, GHJ de Koning, AJ Haverkort, PL Kooman, H van Keulen, and FWT Penning de Vries. 1991. Agro-ecological characterization for potato production. A simulation study at the request of the International Potato Center (CIP), Lima, Peru. CABO-DLO, Report 155.Google Scholar
  30. Tai GCC, D Levy, and WK Coleman. 1994. Path analysis of genotypeenvironment interactons of potatoes exposed to increasing warm-climate constraints. Euphytica 75(1–2): 49–61.CrossRefGoogle Scholar
  31. Van der Zaag P, and AL Demagante. 1988. Potato (Solanum spp.) in an isohyperthermic environment. 3: Evaluation of clones. Field Crops Res 19:167–181.CrossRefGoogle Scholar
  32. Van Keulen H, and W Stol, W. 1995. Agro-ecological zonation for potato production.In: AJ Haverkort and DJL MacKerron (eds), Potato Ecology and Modeling of Crops under Conditions Limiting Growth. Kluwer Academic Publishers, Dordrecht, Netherlands. pp. 357–372.Google Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  1. 1.International Potato Center (CIP)LimaPeru

Personalised recommendations