American Journal of Potato Research

, Volume 80, Issue 4, pp 251–261 | Cite as

Critical petiole nitrate concentration of two processing potato cultivars in Eastern Canada

  • G. Bélanger
  • J. R. Walsh
  • J. E. Richards
  • P. H. Milburn
  • N. Ziadi


Plant-based diagnostic methods of nitrogen (N) nutrition such as petiole nitrate (NO3-N) concentration can be used to improve the efficiency of N utilization, and hence decrease the risks of N losses to the environment. Our first objective was to determine the effect of N fertilization and supplemental irrigation on the petiole NO3-N concentration during tuber growth of two potato cultivars, Russet Burbank and Shepody, widely grown for processing in Eastern Canada. Our second objective was to establish the critical petiole NO3-N concentration using the relationship between petiole NO3-N concentration and the N nutrition index (NNI), an index based on the N concentration of shoots and tubers. This on-farm study was conducted at two sites in each of three years, 1995 to 1997. The N fertilization rates ranged from 0 to 250 kg N ha−1 with three rates in 1995, six rates in 1996, and four rates in 1997. The NO3-N concentration of petioles from the most recently mature leaves was measured on three sampling dates in 1995 and four sampling dates in 1996 and 1997. The petiole NO3-N concentration generally decreased with time. At all sites and on all sampling dates, the petiole NO3-N concentration increased with increasing N fertilization and was significantly greater for Shepody than for Russet Burbank. Irrigation had no consistent effect on petiole NO3-N concentration. Petiole NO3-N concentration was related to NNI (0.29<R2<0.62). Critical petiole NO3-N concentrations required to reach a NNI of 1.0, indicating a situation where N is not limiting growth, were greater for Shepody than for Russet Burbank, and they decreased with time. Critical petiole NO3-N concentrations (Y) expressed as a function of the number of days after planting (X) are Y = 4.80 - 0.055X for Russet Burbank and Y = 5.03 - 0.054X for Shepody.

Additional Key Words

Solanum tuberosum L. nitrogen fertilizer irrigation 


Métodos de diagnóstico de nutrición nitrogenada (N), como el del concentrado de (NO3-N) en peciolos, pueden ser usados para mejorar la eficiencia de utiliazción del N y reducir los riesgos de pérdidas al medio ambiente. Nuestro primer objetivo fue determinar el efecto de la fertilización con N e irrigación suplementaria sobre la concentración de NO3-N en el peciolo, durante el periodo de desarrollo de tubérculos en dos cultivares de papa, Russet Burbank y Shepody,.ampliamente cultivados en el Oriente Canadinese para procesameinto. Nuestro segundo objetivo fue establecer el nievel de concentración crítico del NO3-N en el peciolo, usando la relación entre la concentracuión de NO3-N en el peciolo y el índice de nutrición de N (NNI), índice que esta basado en la concentración de N en los tallos y tubérculos. Este estudio fue conducido en finca de agricultores en dos lugares por tres años consecutivos, 1995–1997. Los niveles de fertilización oscilaron entre 0 y 250 kg N ha−1, con tres niveles en 1995, seis en 1996 y cuatro en 1997. La concentración de NO3-N en los peciolos de las hojas maduras mas recientes fue medida durante tres fechas en 1995 y cuatro fechas en 1996 y 1997. La concentración de NO3-N en el peciolo generalmente disminuyó con el tiempo. En ambos lugares y en todas las fechas en que se tomaron las muestras, la concentración de NO3-N en el peciolo se incrementó a medida que se aumentó el nivel de fertilizacion de N; siendo significativamente superior el incremento en Shepody que el de Russet Burbank. La irrigación suplementaria no tuvo un efecto consistente en la concentración de NO3-N en el peciolo. La concentración de NO3-N en el peciolo estuvo relacionada con el NNI (0.29<R2<0.62). El Nivel crítico de concentración de NO3-N en el peciolo, requerido para alcanzar un NNI de 1.0, indicando una situación en que N no es limitante en el crecimiento, fue mayor para Shepody que para Russet Burbank y disminuye con el tiempo. El nivel crítico de concentración de NO3-N en el peciolo (Y), expresado como una función del número de dias después de la siembra (X), es igual: Y = 4.80 - 0.055X para Russet Burbank y Y = 5.03 - 0.054X para Shepody.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bélanger G, and F Gastal. 2000. Nitrogen utilization by forage grasses. Can J Plant Sci 80:11–20.Google Scholar
  2. Bélanger G, JE Walsh, JE Richards, PH Milburn, and N Ziadi. 2000. Yield response of two potato cultivars to supplemental irrigation and N fertilization in New Brunswick. Am J Potato Res 77:11–21.Google Scholar
  3. Bélanger G, JR Walsh, JE Richards, PH Milburn, and N Ziadi. 2001a. Critical nitrogen curve and nitrogen nutrition index for potato in Eastern Canada. Am J Potato Res 78:355–364.CrossRefGoogle Scholar
  4. Bélanger G, JR Walsh, JE Richards, PH Milburn, and N Ziadi. 2001b. Predicting nitrogen fertilizer requirements of potatoes in Atlantic Canada with soil nitrate determinations. Can J Soil Sci 81:535–544.Google Scholar
  5. Bélanger G, JR Walsh, JE Richards, PH Milburn, and N Ziadi. 2001c. Tuber growth and biomass partitioning of two potato cultivars grown under daterent N fertilization rates with and without irrigation. Am J Potato Res 78:10–117.Google Scholar
  6. Curwen D, and LR Massie. 1984. Potato irrigation scheduling in Wisconsin. Am Potato J 61:235–241.CrossRefGoogle Scholar
  7. Doll EC, DR Christenson, and AR Wolcott. 1971. Potato yields as related to nitrate levels in petioles and soils. Am Potato J 48:105–112.Google Scholar
  8. Duchenne T, JM Machet, and M Martin. 1997. Potatoes.In: G Lemaire (ed), Diagnosis of the Nitrogen Status in Crops. Springer-Verlag, Berlin. pp. 119–130.Google Scholar
  9. Gardner BR, and JP Jones. 1975. Petiole analysis and the nitrogen fertilization of Russet Burbank potatoes. Am Potato J 52:195–200.CrossRefGoogle Scholar
  10. Genstat 5 Committee. 1993. Genstat 5 Release 3 Reference Manual. Clarendon Press, Oxford.Google Scholar
  11. Hegney MA, and IR McPharlin. 2000. Response of summer-planted potatoes to level of applied nitrogen and water. J Plant Nutr 23:197–218.Google Scholar
  12. Huett DO, and E White. 1992. Determination of critical nitrogen concentrations of potatoes (Solanum tuberosum L. cv. Sebago) grown in sand culture. Aust J Exp Agr 32:765–772.CrossRefGoogle Scholar
  13. Justes E, JM Meynard, B Mary, and D Plénet. 1997. Diagnosis using stem base extract: JUBIL Method.In: G Lemaire (ed), Diagnosis of the Nitrogen Status in Crops. Springer-Verlag, Berlin. pp. 163–187.Google Scholar
  14. Lewis RJ, and SL Love. 1994. Potato genotype differ in petiole nitratenitrogen concentrations over time. HortScience 29:175–179.Google Scholar
  15. MacMurdo W, RK Prange, and R Veinot. 1988. Nitrogen fertilization and petiole tissue testing in production of whole seed tubers of the potato cultivars Sebago and Atlantic. Can J Plant Sci 68:901–905.CrossRefGoogle Scholar
  16. Maier NA, AP Dahlenburg, and CMJ Williams. 1994. Effect of nitrogen, phosphorus, and potassium on yield and petiolar nutrient concentration of potato (Solanum tuberosum L.) cw. Kennebec and Atlantic. Aust J Exp Agr 34:825–834.CrossRefGoogle Scholar
  17. Meyer RD, and DB Marcum. 1998. Potato yield, petiole nitrogen, and soil nitrogen response to water and nitrogen. Agron J 90:420–429.CrossRefGoogle Scholar
  18. Porter GA, and JA Sisson. 1991. Petiole nitrate content of Maine-grown Russet Burbank and Shepody potatoes in response to varying nitrogen rate. Am Potato J 68:493–505.CrossRefGoogle Scholar
  19. Rykbost KA, NW Christensen, and J Maxwell. 1993. Fertilization of Russet Burbank in short-season environment. Am Potato J 70:699–710.CrossRefGoogle Scholar
  20. Sanderson JB, JA MacLeod, and J Kimpinski. 1999. Glyphosate application and timing of tillage of red clover affects potato response to N, soil N profile, and root and soil nematodes. Can J Soil Sci 79:65–72.Google Scholar
  21. Sharma UC. 1996. Use of half-life technique to diagnose nitrate-nitrogen status in petioles of potato (Solamum tuberosum) during growing season. Indian J Agr Sci 66:1–6.Google Scholar
  22. Singh JP. 1993. Tissue analysis technology for nitrogen fertilization of potato grown under subtropics short day conditions. Fert Res 36:19–27.CrossRefGoogle Scholar
  23. Stark JC, IR McCann, DT Westermann, B Izadi, and TA Tindall. 1993. Potato response to split nitrogen timing with varying amounts of excessive irrigation. Am Potato J 70:765–777.CrossRefGoogle Scholar
  24. Waterer D. 1997. Petiole sap NO3-N testing as a method for monitoring nitrogen nutrition of potato crops. Can J Plant Sci 77:273–278.Google Scholar
  25. Westcott MP, VR Stewart, and RE Lund. 1991. Critical petiole nitrate levels in potato. Agron J 83:844–850.CrossRefGoogle Scholar
  26. Williams CMJ, and NA Maier. 1990. Determination of the nitrogen status of irrigated potato crops. I. Critical nutrient ranges for nitrate-nitrogen in petioles. J Plant Nutr 13:971–984.Google Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • G. Bélanger
    • 1
  • J. R. Walsh
    • 2
  • J. E. Richards
    • 3
  • P. H. Milburn
    • 4
  • N. Ziadi
    • 1
  1. 1.Soils and Crops Research and Development CentreAgriculture and Agri Food CanadaQuébecCanada
  2. 2.McCain Foods LimitedFlorencevilleCanada
  3. 3.Atlantic Cool Climate Crop Research CentreAgriculture and Agri-Food CanadaSt-John’sCanada
  4. 4.Potato Research CentreAgriculture and Agri-Food CanadaFrederictonCanada

Personalised recommendations