Advertisement

American Potato Journal

, Volume 72, Issue 4, pp 225–241 | Cite as

Porometric measurements indicate wound severity and tuber maturity affect the early stages of wound-healing

  • Edward C. Lulai
  • Paul H. Orr
Article

Abstract

We demonstrated that porometrically derived wound-healing profiles of whole tubers were greatly affected by the depth or severity of the wound. A rapid decrease in water vapor conductance was detected during the first 24 h of healing after mature, whole tubers were wounded by tangentially cutting into the cortex. The rapid decline in vapor conductance, indicating deposition of soluble waxes, was not concurrent with detectable deposition of polymeric phenolic or polymeric aliphatic components of the suberin polyester; instead these polymerized components were detected after vapor conductance decreased by approximately 80% and was nearly stable. The rate of decline of vapor conductance of wound-healing tubers was hormonally hastened with abscisic acid treatments. Although deeper tangential wounds (3.0 mm) had slower initial rates of wound-healing than did shallow wounds (0.75 mm) through tuber growth and maturation, the ability to wound-heal more rapidly increased as the tubers matured in the field. The vapor conductance of wound healing tubers declined in a log-linear fashion during the first 1 to 3 days after wounding depending upon tuber maturity and genotype.

Additional Key Words

Maturity periderm porometry tuber wound-healing 

Compendio

Se demostró que los perfiles de cicatrización de las heridas de tubérculos enteros, obtenidos porométricamente, fueron mayormente afectados por la profundidad o severidad de las heridas. Se detecto una reducción rápida en la cunductancia del vapor de agua durante las primeras 24 horas de cicatrización después que se produjeran heridas en tubérculos maduros enteros, cortándolos tangencialmente en la corteza. La rápida reducción en la conductancia del vapor, indicando el deposito de substancias cerosas solubles, no fue concurrente con los depósitos detectables de componentes fenólicos o alifásicos polímeros del poliester de la suberina; en lugar de ello, estos componentes polímeros fueron detectados después que la conductancia del vapor disminuyó en aproximadamente 80% y se mantuvo casi estable. La tasa de disminución de la conductancia del vapor de los tubérculos cuyas heridas estaban cicatrizando fue acelerada hormonalmente con tratamientos de ácido abscísico. No obstante que las heridas tangenciales más profundas (3.0 mm) tuvieron tasas iniciales de cicatrización más lentas que las heridas superficiales (0.75 mm) durante el crecimiento y maduración de los tubérculos, la capacidad de cicatrizar más rápido se incrementó conforme los tubérculos maduraron en el campo. La conductancia del vapor de los tubérculos en cicatrización disminuyó de manera logaritmicolineal durante los tres primeros días después de producida la herida dependiendo de la madurez del tubérculo y del genotipo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Bland, W.L., C.B. Tanner and E.A. Maher. 1987. Vapor conductance of wounded potato tuber tissue. Am Potato J 64:197–207.CrossRefGoogle Scholar
  2. 2.
    Borg-Olivier, E. and B. Monties. 1993. Lignin, suberin, phenolic acids and tyramine in the suberized, wound-induced potato periderm. Phytochemistry 32:601–606.CrossRefGoogle Scholar
  3. 3.
    Bostock, R.M. and B.A. Stermer. 1989. Perspectives on wound-healing in resistance to pathogens. Ann Rev Phytopathol 27:343–371.CrossRefGoogle Scholar
  4. 4.
    Bostock, R.M., H. Yamamoto, D. Choi, K.E. Ricker and B.L. Ward. 1992. Rapid stimulation of 5-lipoxygenase activity in potato by the fungal elicitor arachidonic acid. Plant Physiol 100:1448–1456.PubMedGoogle Scholar
  5. 5.
    Choi, D. and R.M. Bostock. 1994. Involvement of de Novo protein synthesis, protein kinase, extracellular Ca2+, and lipoxygenase in arachidonic acid induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase genes and isoprenoid accumulation in potato (Solanum tuberosum L.). Plant Physiol 104:1237–1244.PubMedGoogle Scholar
  6. 6.
    Cottle, W. and P.E. Kolattukudy. 1982. Abscisic acid stimulation of suberization. Plant Physiol 70:775–780.PubMedGoogle Scholar
  7. 7.
    Dean, B.B. 1989. Deposition of aliphatic suberin monomers and associated alkanes during aging ofSolanum tuberosum L. tuber tissue at different temperatures. Plant Physiol 89:1021–1023.PubMedGoogle Scholar
  8. 8.
    Hammerschmidt, R. 1985. Determination of natural and wound-induced potato tuber suberin phenolics by thioglycolic acid derivatization and cupric oxide oxidation. Potato Research 28:123–127.CrossRefGoogle Scholar
  9. 9.
    Kolattukudy, P.E. 1984. Biochemistry and function of cutin and suberin. Can J Bot 62:2918–2933.Google Scholar
  10. 10.
    Kolattukudy, P.E. and B.B. Dean. 1974. Structure, gas Chromatographic measurement, and function of suberin synthesized by potato tuber tissue slices. Plant Physiol 54:116–121.PubMedGoogle Scholar
  11. 11.
    Laties, G.G. 1978. The development and control of respiratory pathways in slices of plant storage organs.In: Biochemistry of Wounded Plant Tissues (G. Kahl ed.); Walter de Gruyter & Co., Berlin, New York. 421–466.Google Scholar
  12. 12.
    Lulai, E.C. and W.C. Morgan. 1992. Histochemical probing of potato periderm with neutral red: a sensitive cytofluorochrome for the hydrophobic domain of suberin. Biotechnic and Histochemistry 67:185–195.PubMedCrossRefGoogle Scholar
  13. 13.
    Lulai, E.C. and P.H. Orr. 1993. Determining the feasibility of measuring genotypic differences in skin-set. Am Potato J 70:599–609.CrossRefGoogle Scholar
  14. 14.
    Lulai, E.C. and P.H. Orr. 1994. Techniques for detecting and measuring developmental and maturational changes in tuber native periderm. Am Potato J 71:489–505.CrossRefGoogle Scholar
  15. 15.
    Lyon, G.D. 1989. The biochemical basis of resistance of potatoes to soft rotErwina spp.— a review. Plant Pathology 38:313–339.CrossRefGoogle Scholar
  16. 16.
    McDermitt, D.K. 1990. Sources of error in the estimation of stomatal conductance and transpiration from porometer data. Hortscience 25(12):1538–1548.Google Scholar
  17. 17.
    Nolte, P., G.A. Secor and N.C. Gudmestad. 1987. Wound healing, decay and chemical treatment of cut potato tuber tissue. Am Potato J 64:1–9.CrossRefGoogle Scholar
  18. 18.
    Reeve, R.M., E. Hautala and M.L. Weaver. 1969. Anatomy and compositional variation with potatoes. I. Developmental histology of the tuber. Am Potato J 46:361–373.Google Scholar
  19. 19.
    Slusarenko, A.J., B.M. Meier, K.P.C. Croft and H.G. Eiben. 1993. Lipoxygenase in plant disease.In: Mechanisms of Plant Defense Responses (B. Fritig and M. Legrand eds.); Kluwer Academic Publishers, The Netherlands. p. 211–220.Google Scholar
  20. 20.
    Soliday, C.L., B.B. Dean and P.E. Kolattukudy. 1978. Suberization: Inhibition by washing and stimulation by abscisic acid in potato disks and tissue culture. Plant Physiol 61:170–174.PubMedCrossRefGoogle Scholar
  21. 21.
    Soliday, C.L., P.E. Kolattukudy and R.W. Davis. 1979. Chemical evidence that waxes associated with the suberin polymer constitute the major diffusion barrier to water vapor. Planta 146:607–614.CrossRefGoogle Scholar
  22. 22.
    Vaughn, S.F. and E.C. Lulai. 1992. Further evidence that lipoxygenase activity is required for arachidonic acid-elicited hypersensitivity in potato callus cultures. Plant Science 84:91–98.CrossRefGoogle Scholar
  23. 23.
    Vayda, M.E., L.S. Antonov, Z. Yang, W.O. Butler and G.H. Lacy. 1992. Hypoxic stress inhibits aerobic wound-inducted resistance and activates hypoxic resistance to bacterial soft rot. Am Potato J 69:239–253.Google Scholar
  24. 24.
    Vogt, E.J. Schonherr and H.W. Schmidt. 1983. Water permeability of periderm membranes isolated enzymatically from potato tubers (Solanum tuberosum L.) Planta 158:294–301.CrossRefGoogle Scholar
  25. 25.
    Wigginton, M.J. 1974. Effects of temperature, oxygen tension and relative humidity on the wound-healing process in the potato tuber. Potato Res 17:200–214.CrossRefGoogle Scholar

Copyright information

© Springer 1995

Authors and Affiliations

  • Edward C. Lulai
    • 1
  • Paul H. Orr
    • 1
  1. 1.Red River Valley Potato Research LaboratoryUSDA-ARSEast Grand Forks

Personalised recommendations