Advertisement

The AAPS Journal

, Volume 8, Issue 2, pp E425–E432 | Cite as

Endocannabinoid signaling directs periimplantation events

  • Haibin Wang
  • Huirong Xie
  • Sudhansu K. DeyEmail author
Article

Abstract

An emerging concept in female reproduction is the role of endocannabinoids, a group of endogenously produced lipid mediators that bind to and activate cannabinoid receptors. Although adverse effects of cannabinoids in female reproduction have been implicated for years, the mechanisms by which they exert these effects remained elusive. With the identification of cannabinoid receptors, endocannabinoid ligands, their key synthetic and hydrolytic pathways, and the generation of knockout mouse models for cannabinoid receptors, a wealth of information is now available regarding the significance of cannabinoid/endocannabinoid signaling in early pregnancy. This review focuses on various aspects of endocannabinoid signaling in preimplantation embryo development and activation, and uterine differentiation during the periimplantation embryouterine dialog. It is hoped that a deeper understanding will lead to potential clinical applications of the endocannabinoid system as a target for regulating female fertility.

Keywords

cannabinoid/endocannabinoid embryo development embryo oviductal transport implantation mouse 

References

  1. 1.
    Dey SK, Lim H, Das SK, et al. Molecular cues to implantation.Endocr Rev. 2004;25:341–373.CrossRefPubMedGoogle Scholar
  2. 2.
    Paria BC, Reese J, Das SK, Dey SK. Deciphering the cross-talk of implantation: advances and challenges.Science. 2002;296:2185–2188.CrossRefPubMedGoogle Scholar
  3. 3.
    Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models.Nat Rev Genet. 2006;7:185–199.CrossRefPubMedGoogle Scholar
  4. 4.
    Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy.N Engl J Med. 2001;345:1400–1408.CrossRefPubMedGoogle Scholar
  5. 5.
    Wilcox AJ, Weinberg CR, O'Connor JF, et al. Incidence of early loss of pregnancy.N Engl J Med. 1988;319:189–194.PubMedCrossRefGoogle Scholar
  6. 6.
    Carson DD, Bagchi I, Dey SK, et al. Embryo implantation.Dev Biol. 2000;223:217–237.CrossRefPubMedGoogle Scholar
  7. 7.
    Red-Horse K, Zhou Y, Genbacev O, et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface.J Clin Invest. 2004;114:744–754.PubMedGoogle Scholar
  8. 8.
    Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA.Nature. 1990;346:561–564.CrossRefPubMedGoogle Scholar
  9. 9.
    Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids.Nature. 1993;365:61–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor.Science. 1992;258:1946–1949.CrossRefPubMedGoogle Scholar
  11. 11.
    Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain.Biochem Biophys Res Commun. 1995;215:89–97.CrossRefPubMedGoogle Scholar
  12. 12.
    Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation.Nature. 1997;388:773–778.CrossRefPubMedGoogle Scholar
  13. 13.
    Das SK, Paria BC, Chakraborty I, Dey SK. Cannabinoid ligand-receptor signaling in the mouse uterus.Proc Natl Acad Sci USA. 1995;92:4332–4336.CrossRefPubMedGoogle Scholar
  14. 14.
    Paria BC, Das SK, Dey SK. The preimplation mouse embryo is a target for cannabinoid ligand-receptor signaling.Proc Natl Acad Sci USA. 1995;92:9460–9464.CrossRefPubMedGoogle Scholar
  15. 15.
    Paria BC, Song H, Wang X, et al. Dysregulated cannabinoid signaling disrupts uterine receptivity for embryo implantation.J Biol Chem. 2001;276:20523–20528.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang H, Guo Y, Wang D, et al. Aberrant cannabinoid signaling impairs oviductal transport of embryos.Nat Med. 2004;10:1074–1080.CrossRefPubMedGoogle Scholar
  17. 17.
    Yang ZM, Paria BC, Dey SK. Activation of brain-type cannabinoid receptors interferes with preimplantation mouse embryo development.Biol Reprod. 1996;55:756–761.CrossRefPubMedGoogle Scholar
  18. 18.
    Paria BC, Ma W, Andrenyak DM, et al. Effects of cannabinoids on preimplantation mouse embryo development and implantation are mediated by brain-type cannabinoid receptors.Biol Reprod. 1998;58:1490–1495.CrossRefPubMedGoogle Scholar
  19. 19.
    Rinaldi-Carmona M, Barth F, Heaulme M, et al. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor.FEBS Lett. 1994;350:240–244.CrossRefPubMedGoogle Scholar
  20. 20.
    Rinaldi-Carmona M, Barth F, Millan J, et al. SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor.J Pharmacol Exp Ther. 1998;284:644–650.PubMedGoogle Scholar
  21. 21.
    Sharov AA, Piao Y, Matoba R, et al. Transcriptome analysis of mouse stem cells and early embryos.PLoS Biol. 2003;1:e74.CrossRefPubMedGoogle Scholar
  22. 22.
    Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI. Incrpased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice.Proc Natl Acad Sci USA. 1999;96:5780–5785.CrossRefPubMedGoogle Scholar
  23. 23.
    Jarai Z, Wagner JA, Varga K, et al. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors.Proc Natl Acad Sci USA. 1999;96:14136–14141.CrossRefPubMedGoogle Scholar
  24. 24.
    Heilman RD, Reo RR, Hahn DW. Changes in the sensitivity of adrenergic receptors in the oviduct during early gestation in the rabbit.Fertil Steril. 1976;27:426–430.PubMedGoogle Scholar
  25. 25.
    Howe GR, Black DL. Autonomic nervous system and oviduct function in the rabbit. I. Hormones and contraction.J Reprod Fertil. 1973;33:425–430.PubMedCrossRefGoogle Scholar
  26. 26.
    Kennedy DR, Marshall JM. Effect of adrenergic nerve stimulation on the rabbit oviduct: correlation with norepinephrine content and turnover rate.Biol Reprod. 1977;16:200–211.CrossRefPubMedGoogle Scholar
  27. 27.
    Paria BC, Lim H, Wang XN, Liehr J, Das SK, Dey SK. Coordination of differential effects of primary estrogen and catecholestrogen on two distinct targets mediates embryo implantation in the mouse.Endocrinology. 1998;139:5235–5246.CrossRefPubMedGoogle Scholar
  28. 28.
    Das SK, Wang XN, Paria BC, et al. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation.Development. 1994;120:1071–1083.PubMedGoogle Scholar
  29. 29.
    Yoshinaga K, Adams CE. Delayed implantation in the spayed, progesterone treated adult mouse.J Reprod Fertil. 1996;12:593–595.Google Scholar
  30. 30.
    McLaren A. Blastocysts in the mouse uterus: the effect of ovariectomy, progesterone and oestrogen.J Endocrinol. 1971;50:515–526.CrossRefPubMedGoogle Scholar
  31. 31.
    Schmid PC, Paria BC, Krebsbach RJ, Schmid HH, Dey SK. Changes in anandamide levels in mouse uterus are associated with uterine receptivity for embryo implantation.Proc Natl Acad Sci USA. 1997;94:4188–4192.CrossRefPubMedGoogle Scholar
  32. 32.
    Guo Y, Wang H, Okamoto Y, et al. N-acylphosphatidylethanolamine-hydrolyzing phospholipase D is an important determinant of uterine anandamide levels during implantation.J Biol Chem. 2005;280:23429–23432.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang J, Paria BC, Dey SK, Armant DR. Stage-specific excitation of cannabinoid receptor exhibits differential effects on mouse embryonic development.Biol Reprod. 1999;60:839–844.CrossRefPubMedGoogle Scholar
  34. 34.
    Liu WM, Duan EK, Cao YJ. Effects of anandamide on embryo implantation in the mouse.Life Sci. 2002;71:1623–1632.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang H, Matsumoto H, Guo Y, Paria BC, Roberts RL, Dey SK. Differential G protein-coupled cannabinoid receptor signaling by anandamide directs blastocyst activation for implantation.Proc Natl Acad Sci USA. 2003;100:14914–14919.CrossRefPubMedGoogle Scholar
  36. 36.
    Di Marzo V, Fontana A, Cadas H, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons.Nature. 1994;372:686–691.CrossRefPubMedGoogle Scholar
  37. 37.
    Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a phospholipase D generating anandamide and its congeners.J Biol Chem. 2004;279:5298–5305.CrossRefPubMedGoogle Scholar
  38. 38.
    Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.Nature. 1996;384:83–87.CrossRefPubMedGoogle Scholar
  39. 39.
    Maccarrone M, DeFelici M, Klinger FG, et al. Mouse blastocysts release a lipid which activates anandamide hydrolase in intact uterus.Mol Hum Reprod. 2004;10:215–221.CrossRefPubMedGoogle Scholar
  40. 40.
    Paria BC, Deutsch DD, Dey SK. The uterus is a potential site for anandamide synthesis and hydrolysis: differential profiles of anandamide synthase and hydrolase activities in the mouse uterus during the periimplantation period.Mol Reprod Dev. 1996;45:183–192.CrossRefPubMedGoogle Scholar
  41. 41.
    Paria BC, Zhao X, Wang J, Das SK, Dey SK. Fatty-acid amide hydrolase is expressed in the mouse uterus and embryo during the periimplantation period.Biol Reprod. 1999;60:1151–1157.CrossRefPubMedGoogle Scholar
  42. 42.
    Piomelli D. THC: moderation during implantation.Nat Med. 2004;10:19–20.CrossRefPubMedGoogle Scholar
  43. 43.
    Maccarrone M, Valensise H, Bari M, Lazzarin N, Romanini C, Finazzi-Agro A. Relation between decreased anandamide hydrolase concentrations in human lymphocytes and miscarriage.Lancet. 2000;355:1326–1329.CrossRefPubMedGoogle Scholar
  44. 44.
    Maccarrone M, Bisogno T, Valensise H, et al. Low fatty acid amide hydrolase and high anandamide levels are associated with failure to achieve an ongoing pregnancy after IVF and embryo transfer.Mol Hum Reprod. 2002;8:188–195.CrossRefPubMedGoogle Scholar
  45. 45.
    Song H, Lim H, Paria BC, et al. Cytosolic phospholipase A2alpha is crucial for ‘on-time’ embryo implantation that directs subequent development.Development. 2002;129:2879–2889.PubMedGoogle Scholar
  46. 46.
    Ye X, Hama K, Contos JJ, et al. LPA 3-mediated lysophosphatidic acid signalling in embryo implantation and spacing.Nature. 2005;435:104–108.CrossRefPubMedGoogle Scholar
  47. 47.
    Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregancy.N Engl J Med. 1999;340:1796–1799.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2006

Authors and Affiliations

  1. 1.Departments of Pediatrics, Cell & Developmental Biology and Pharmacology, Division of Reproductive and Developmental BiologyVanderbilt University Medical CenterNashville

Personalised recommendations