American Potato Journal

, Volume 73, Issue 2, pp 63–77 | Cite as

Relationship between leaf gas exchange characteristics and productivity of potato clones grown at different temperatures

  • Michael K. Thornton
  • Nasrullah J. Malik
  • Robert B. Dwelle
Article

Abstract

The rate of dark respiration (Rd) and net photosynthesis (Pn) at various leaf temperatures was examined in three potato clones (Solatium tuberosum L.) differing in heat tolerance. Plants were grown at low (25/12 C, day/night) and high (35/25 C) greenhouse air temperatures for five weeks, beginning two weeks after tuberization. Gas exchange characteristics were measured by manometric and infrared gas analyzer techniques. Respiration:photosynthesis ratios were calculated as indicators of leaf carbon balance. High greenhouse temperature reduced whole plant and tuber growth rate of all clones, however, the reduction was highest in the cultivar Russet Burbank (heat sensitive). Gas exchange characteristics did not explain differences in heat tolerance. The heat tolerant cultivar Desiree had Rd similar to Russet Burbank, while the clone DTO-28, also heat tolerant, had lower Rd of mature leaves than Russet Burbank or Desiree. However, all clones had similar Rd of immature leaves. There was no apparent relationship between heat tolerance and Pn for the three clones. DTO-28 had lower respirationrphotosynthesis ratios of immature and mature leaves than Russet Burbank 4 weeks after the start of the high temperature treatment. Desiree had respiration:photosynthesis ratios as high as Russet Burbank. At different sampling times, Rd increased in a linear and curvilinear manner with increasing leaf temperature up to 40 C. Heat tolerant and sensitive clones had similar rates of increase in Rd with increasing leaf temperature. Simultaneous measurement of Rd and Pn did not help explain differences in heat tolerance among clones. However, determination of respirationrphotosynthesis ratios may help explain the physiological basis for heat tolerance of some clones.

Additional Key Words

Solanum tuberosum heat stress temperature response respiration:photosynthesis ratio growth rate 

Compendio

La tasa de respiración en oscuridad (Ro) y fotosíntesis neta (Fn) a varias temperaturas foliares fue examinada en tres clones de papa (Solanum tuberosum L.) que difieren en su tolerancia al calor. Las plantas fueron desarrolladas en invernaderos de temperaturas bajas (25/12 C día/noche) y altas (35/25 C) por cinco semanas, empezando dos semanas después de la tuberización. Las caracteristicas de intercambio gaseoso fueron medidas por técnicas manométricas y de análisis infrarrojo de gases. Las proporciones de respiración:fotosíntesis fueron calculadas como indicadoras del balance carbónico de la hoja. La temperatura alta del invernadero redujo la tasa de crecimiento de los tubérculos y de la planta en general en todos los clones, aunque la reducción fue mayor en el cultivar Russet Burbank (sensible al calor). Las características de intercambio gaseoso no explicaron las diferencias en la tolerancia al calor. El cultivar Desiree, tolerante al calor, tuvo una Ro similar a la del cultivar Russet Burbank, mientras que el clon DTO-28, también tolerante al calor, tuvo una Ro menor que la de Russet Burbank o Desiree en las hojas maduras. Sin embargo, todos los clones mostraron una Ro similar en las hojas inmaduras. No hubo una relación aparente entre la tolerancia al calor y la Fn de los tres clones. DTO-28 presentó menores proporciones de respiración:fotosíntesis que Russet Burbank en las hojas maduras e inmaduras, cuatro semanas después de iniciado el tratamiento con temperatura alta. Las proporciones de respiración:fotosíntesis de Desiree fueron tan altas como las de Russet Burbank. La Ro aumentó en forma lineal y curvilínea cuando se incrementó la temperatura foliar hasta 40 C, en diferentes épocas de muestreo. Los clones tolerantes y sensibles al calor mostraron tasas similares de incrementó de la Ro cuando se aumentó la temperatura foliar. La medición simultánea de Ro y Fn no ayudó a explicar las diferencias en la tolerancia al calor de los clones. Sin embargo, la determinación de las proporciones de respiración:fotosíntesis puede ayudar a explicar la base fisiológica para la tolerancia al calor de algunos clones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Basu, P. S. and J. S. Minhas. 1991. Heat tolerance and assimilate transport in different potato genotypes. J Exp Bot 42:861–866.CrossRefGoogle Scholar
  2. 2.
    Ben Khedher, M. and E.E. Ewing. 1985. Growth analysis of eleven potato cultivars grown in the greenhouse under long photoperiods with and without heat stress. Am Potato J 62:537–554.Google Scholar
  3. 3.
    Burton, W.G. 1964. The respiration of developing potato tubers. Eur Potato J 7:90–101.CrossRefGoogle Scholar
  4. 4.
    Dwelle, R.B. 1985. Photosynthesis and photoassimilate partitioning. In: Potato Physiology. P.H. Li (Ed). Academic Press, London. pp 35–58.Google Scholar
  5. 5.
    Ewing, E.E. 1981. Heat Stress and the tuberization stimulus. Am Potato J 58:31–49.CrossRefGoogle Scholar
  6. 6.
    Freed, R., S.P. Eisensmith, S. Geotz, D. Riecosky, V.W. Smail, and P. Wolberg. 1987.MSTAT: A Software Program for the Design, Management, and Analysis of Agronomic Research Experiments. Dept of Crop and Soil Sci, Michigan State Univ., East Lansing, MI.Google Scholar
  7. 7.
    Hammes, P.S. and J.A. De Jager. 1990. Net photosynthetic rate of potato at high temperature. Potato Res 33:515–520.CrossRefGoogle Scholar
  8. 8.
    Jones, R.J. and C.J. Nelson. 1979. Respiration and concentration of water soluble carbohydrate in plant parts of contrasting tall fescue genotypes. Crop Sci 19:367–372.CrossRefGoogle Scholar
  9. 9.
    Leach, J.E., K.J. Parkinson, and T. Woodhead. 1982. Photosynthesis, respiration and evaporation of a field-grown potato crop. Ann Appl Biol 101:377–390.CrossRefGoogle Scholar
  10. 10.
    Levy, D. 1984. CultivatedSolanum tuberosum as a source for the selection of cultivars adapted to hot climates. Trop Agric 61:167–170.Google Scholar
  11. 11.
    Levy, D. 1986. Genotypic variation in the response of potatoes (Solanum tuberosum L. to high ambient temperatures and water deficit. Field Crops Res 15:85–96.CrossRefGoogle Scholar
  12. 12.
    Malik, N.J., R.B. Dwelle, M.K. Thornton, and J.J. Pavek. 1992. Dry matter accumulation in potato clones under seasonal high temperature conditions in Pakistan. Am Potato J 69:667–676.CrossRefGoogle Scholar
  13. 13.
    Marinus, J. and K.B.A. Bodleander. 1975. Responses of some potato varieties to temperature. Potato Res 18:189–204.CrossRefGoogle Scholar
  14. 14.
    Marshall, H.G. 1982. Breeding for tolerance to heat and cold. In:Breeding Plants for Less Favorable Environments. M.N. Christiansen and C.F. Lewis (Eds). Wiley and Sons, New York. pp 13–45.Google Scholar
  15. 15.
    Mendoza, H.A. and R.N. Estrada. 1979. Breeding potatoes for tolerance to stress. Heat and frost. In:Stress Physiology in Crop Plants. H. Mussell and R.C. Staples (Eds). Wiley and Sons, New York. pp 227–262.Google Scholar
  16. 16.
    Midmore, D.J. and R.K. Prange. 1992. Growth response of twoSolanum species to contrasting temperatures and irradiance levels: Relations to photosynthesis, dark respiration and chlorophyll fluorescence. Ann Bot 69:13–20.Google Scholar
  17. 17.
    Morpurgo, R. and R. Ortiz. 1988. Morphological variation of the potato (Solanum spp) under contrasting environments. Env and Exp Bot 28:165–169.CrossRefGoogle Scholar
  18. 18.
    Quisenberry, J. E. 1982. Breeding plants for drought resistance and plant water use efficiency. In:Breeding Plants for Less Favorable Environments. M.N. Christiansen and C.F. Lewis (Eds). Wiley and Sons, New York, pp 193–212.Google Scholar
  19. 19.
    Reynolds, M.P. and E.E. Ewing. Effects of high air and soil temperature stress on growth and tuberization inSolanum tuberosum. Ann Bot 64:241–247.Google Scholar
  20. 20.
    Sale, P.J.M. 1973. Productivity of vegetable crops in a region of high solar input. III. Carbon balance of potato crops. Aust J Plant Physiol 1:283–296.CrossRefGoogle Scholar
  21. 21.
    Sestak, Z., I. Ticha, J. Catsky, J. Solarova, J. Popisilova, and D. Hodanova. 1985. Integration of photosynthetic characteristics during leaf development. In:Photosynthesis During Leaf Development. Z. Sestak (Ed). Academia, Prague. pp 263–286.Google Scholar
  22. 22.
    Thornton, M.K., 1990. The influence of temperature on leaf respiration and relationship to productivity of potato clones. PhD Dissertation, Univ. Of Idaho, Moscow, Idaho.Google Scholar
  23. 23.
    Wilson, D. 1972. Variation in photorespiration inLolium. J Exp Bot 23:517–524.CrossRefGoogle Scholar
  24. 24.
    Winkler, E. 1971. Kartoffelbau in Tirol. II. Photosynthesevermogen und Respiration von verschiedenen Kartoffelsorten. Potato Res 14:1–18.CrossRefGoogle Scholar
  25. 25.
    Wolf, S., A. Olesinski, J. Rudich, and A. Marani. 1990. Effect of high temperature on photosynthesis in potatoes. Ann Bot 65:179–185.Google Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • Michael K. Thornton
    • 1
  • Nasrullah J. Malik
    • 2
  • Robert B. Dwelle
    • 3
  1. 1.University of Idaho Research and Extension CenterParma
  2. 2.ActionaidIslamabadPakistan
  3. 3.Plant Science DivisionUniversity of IdahoMoscow

Personalised recommendations