American Potato Journal

, Volume 69, Issue 4, pp 239–253 | Cite as

Hypoxic stress inhibits aerobic wound-induced resistance and activates hypoxic resistance to bacterial soft rot

  • Michael E. Vayda
  • Lyudmil S. Antonov
  • Z. Yang
  • William O. Butler
  • George H. Lacy


Resistance to bacterial soft rot in potato tubers maintained aerobically was induced by wounding tubers 4 to 24 h prior to inoculation withErwinia carotovora subsp.carotovora. This wound-induced resistance phenomenon was blocked by hypoxic stress. An hypoxia-induced resistance mechanism also was detected: tubers acclimated to a hypoxic environment were resistant to rot when inoculated with aerobically grownE. c. subsp.carotovora and incubated in atmospheres made hypoxic by argon or nitrogen. With increased pretreatment, hypoxia-induced resistance approached the levels of resistance observed in tubers inoculated with aerobic-adapted bacteria and incubated aerobically. Hypoxia-adaptedE. c. subsp.carotovora overcame hypoxia-induced resistance.

Additional Key Words

Erwinia carotovora subsp.carotovora anaerobic aerobic oxygen argon atmosphere nitrogen atmosphere potato Solanum tuberosum cvs. Superior Russet Burbank BelRus tuber 


Se indujo resistencia a la pudrición blanda bacteriana en tubérculos de papa, mantenidos aeróbicamente, hiriéndolos 4 a 24 h antes de inocularlos conErwinia carotovora subsp.carotovora. Este fenómeno de inducción de resistencia mediante heridas fue bloqueado por estrés hipóxico. También se observó un mecanismo de resistencia inducida por hipoxia: los tubérculos aclimatados a un ambiente hipóxico fueron resistentes a la pudrición cuando se les inoculo conE. c. subsp.carotovora y se les incubó en atmósferas hipóxicas logradas con argón o nitrógeno. Con mayor pretratamiento, la resistencia por inducción de hipoxia alcanzó los niveles de resistencia observada en tubérculos inoculados con bacterias adaptadas a un medio aeróbico e incubadas aeróbicamente.E. c. subsp.carotovora adaptada a la hipoxia venció la resistencia inducida por la misma.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Antonov, L.S., M.E. Vayda and G.H. Lacy. 1989. Hypoxic resistance in potato tubers to the soft-rot bacteriumErwinia carotovora subsp.carotovora. Phytopathol 79: 1190.Google Scholar
  2. 2.
    Antonov, L.S., M.E. Vayda and G.H. Lacy. 1990. Potato tubers: Hypoxic resistance to soft-rot, p. 773–778.In: Proc 7th Int Conf Plant Path Bact, 11–16 June, 1989 Budapest, Hungary, Akadémiai Kiadó, Budapest.Google Scholar
  3. 3.
    Austin, S., E. Lojkowska, M.K. Ehlenfeldt, A. Kelman and J.P. Helgeson. 1988. Fertile interspecific somatic hybridsof Solanum: A novel source of resistance toErwinia soft rot. Phytopathol 78: 1216–1220.CrossRefGoogle Scholar
  4. 4.
    Basham, H.G. and D.F. Bateman. 1975. Relationship of cell death in plant tissue treated with a homogenous endopectate lyase to cell wall degradation. Physiol Plant Pathol 5: 249–261.Google Scholar
  5. 5.
    Butler, W., L. Cook and M.E. Vayda. 1990. Hypoxic stress inhibits multiple aspects of the potato tuber wound response. Plant Physiology 93: 264–270.PubMedGoogle Scholar
  6. 6.
    Chatterjee, A.K. and M.P. Starr. 1980. Genetics of Erwinia species. Annu Rev Microbiol 34: 645–676.PubMedCrossRefGoogle Scholar
  7. 7.
    Cheema, A.S. and N.F. Haard, 1978. Induction of rishitin and lubimin in potato tuber disks by nonspecific elicitors and the influence of storage conditions. Physiol Plant Pathol 13: 233–240.CrossRefGoogle Scholar
  8. 8.
    Collmer, A. and D.F. Bateman. 1982. Role of extracellular pectate lyases inErwinia chrysanthemi: evidence that reactiion products of pectate lyase and exo-poly-α-D galacturonosidase mediate induction. Physiol Plant Pathol 21: 127–139.Google Scholar
  9. 9.
    Collmer, A. and N.T. Keen. 1986. The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol 24: 383–409.CrossRefGoogle Scholar
  10. 10.
    Condit, G.M. and R.B. Meagher. 1987. Expression of a gene encoding a glycine-rich protein in petunia. Mol Cell Biol 7: 4273–4279.PubMedGoogle Scholar
  11. 11.
    Cramer, C.L., J.N. Bell, T.B. Ryder, J.A. Bailey, W. Schuch, G.P. Bolwell, M.P. Robbins, R.A. Dixon, C.J. Lamb. 1985. Coordinated synthesis of phytoalexin biosynthetic enzymes in biolgically stressed cells of bean (Phaseolus vulgaris L.) EMBO J 4: 285–289.PubMedGoogle Scholar
  12. 12.
    Davis, M.C., W. Butler, M.E. Vayda. 1990. Molecular responses to environmental stress and their relationship to soft rot.In: Vayda, M.E., W.D. Park (Eds.),Molecular and Cellular Biology of the Potato, C.A.B. International Publishers, Oxon, UK. pp. 71–88.Google Scholar
  13. 13.
    De Boer, S.H., A. Kelman. 1978. Influence of oxygen concentration and storage factors on the susceptibility of potato tubers to soft rot. Potato Res 21: 65–80.CrossRefGoogle Scholar
  14. 14.
    Gabriel, D.W., B.G. Rolfe. 1990. Working models of specific recognition in plantmicrobe interactions. Annu Rev Phytopathol 28: 365–391.CrossRefGoogle Scholar
  15. 15.
    Ghanekar, A.S., S.R. Padwal-Desal, G.B. Nadkarni. 1984. The involvement of phenolics and phytoalexins in resistance of potato to soft. rot. Potato Res 27: 189–199.CrossRefGoogle Scholar
  16. 16.
    Ishizaka, N., K. Tomiyama. 1972. Effect of wounding or infection byPhytophthora infestans on the contents of terpenoids in potato tubers. Plant Cell Physiol 13: 1053–1063.Google Scholar
  17. 17.
    Kahl, G. 1978. Induction and degradation of enzymes in aging plant storage tissues.In: Biochemistry of Wounded Plant Tissues. Walter De Gruyter Publishers, Berlin, GDR.Google Scholar
  18. 18.
    Lawton, M.A., R.A. Dixon, K. Hahlbrock, C.J. Lamb. 1983. Rapid induction of the synthesis of phenylalanine ammonia-lyase and of chalcone synthase in elicitor treated plant cells. Eur J Biochem 129: 593–601.PubMedCrossRefGoogle Scholar
  19. 19.
    Liang, X., M. Dron, C.L. Cramer, R.A. Dixon, C.J. Lamb. 1989. Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environmental cues. J Biol Chem 264: 14486–14492.PubMedGoogle Scholar
  20. 20.
    Lyon, G.D. 1989. The biochemical basis of resistance of potatoes to soft rot. Plant Pathol 38: 313–339.CrossRefGoogle Scholar
  21. 21.
    Maher, E.A., A. Kelman. 1983. Oxygen status of potato tuber tissue in relation to maceration by pectic enzymes ofErwinia carotovora. Phytopathol 73: 536–539.Google Scholar
  22. 22.
    McGuire, R.G., A. Kelman. 1984. Reduced severity of erwinia soft rot in potato tubers with increased calcium content. Phytopathol 74: 1250–1256.Google Scholar
  23. 23.
    Mount, M.S., D.F. Bateman, H.G. Basham. 1970. Induction of electrolyte loss, tissue maceration, and cellular death of potato tissue by and endopolygalacturonate trans-eliminase. Phytopathol 60: 924–931.CrossRefGoogle Scholar
  24. 24.
    Otazu, V., G.A. Secor. 1981. Soft rot susceptibility of potatoes with high reducing sugar content. Phytopathol 71: 290–295.CrossRefGoogle Scholar
  25. 25.
    Pena-Cortes, H., J. Sanchez-Serrano, M. Rocha-Sosa, L. Willmitzer. 1988. Systemic induction of proteinase-inhibitor-II gene expression in potato plants by wounding. Planta 174: 84–89.CrossRefGoogle Scholar
  26. 26.
    Pérombelon, M.C., A. Kelman. 1980. Ecology of the soft rot erwinias. Annu Rev Phytopathol 18:361–387.CrossRefGoogle Scholar
  27. 27.
    Rhodes, J.M., L.S.C. Wooltorton. 1978. The biosynthesis of phenolic compounds in wounded plant storage tissues, p. 243–286.In: Biochemistry of Wounded Plant Tissues, Kahl, G. (Ed.), Walter de Gruyter, Berlin.Google Scholar
  28. 28.
    Roberts, D.P., P.M. Berman, C. Allen, V.K. Stromberg, G.H. Lacy, M.S. Mount. 1986. Requirement for two or moreErwinia carotovora sp.carotovora pectolytic gene products for maceration of potato tuber tissue. J Bacteriol 167: 279–284.PubMedGoogle Scholar
  29. 29.
    Rumeau, D., E.A. Maher, A. Kelman, A.M. Showalter. 1990. Extensin and phenylalanine ammonia-lyase gene expression altered in potato tubers in response to wounding, hypoxia, andErwinia carotovora infection. Plant Physiol 93: 1134–1139.PubMedCrossRefGoogle Scholar
  30. 30.
    Sakai, S., K. Tomiyama, N. Doke. 1979. Synthesis of a sesquiterpenoid phytoalexin in non-infected tissue from various parts of potato plants immediately after slicing. Ann. Phytopathol Soc Japan 45: 705–711.Google Scholar
  31. 31.
    Sambrook, J., E.R. Fritsch, T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed, Cold Springs Harbor Laboratory Press, Cold Springs Harbor, NY.Google Scholar
  32. 32.
    Shirsat, S.G., P.M. Nair. 1981. Biochemical mechanism for the inhibition of phenylalanine ammonia-lyase in the absence of oxygen in potato tuber tissue. Phytochem 20:2315–2318.CrossRefGoogle Scholar
  33. 33.
    Showalter, A.M., J.N. Bell, C.L. Cramer, J.A. Bailey, J.E. Varner, C.J. Lamb. 1985. Accumulation of a hydroxyproline-rich glycoprotein mRNA in response to fungal elicitor and infection. Proc Natl Acad Sci USA 82: 6551–6555.PubMedCrossRefGoogle Scholar
  34. 34.
    Stermer, B.A., R.M. Bostock. 1987. Involvement of 3-hydroxy-3 methylglutaryl coenzyme A reductase in the regulation of the sesquiterpenoid phytoalexin synthesis in potato. Plant Physiol 84: 404–408.PubMedGoogle Scholar
  35. 35.
    Tripathi, R.K. 1976. Interactions of potato tuber polyphenols and proteins withErwinia carotovora In: Solheim, B., J. Rea (Eds.). Cell Wall Biochemistry Related to Specificity in Host-Pathogen Interactions. Universitetsforlaget, Tromso, Norway, p. 281–287.Google Scholar
  36. 36.
    Vayda, M.E., H.J. Schaeffer. 1988. Hypoxic stress inhibits appearance of wound response proteins in potato tubers. Plant Physiol 88: 805–809.PubMedGoogle Scholar
  37. 37.
    Yang, Z., C.L. Cramer, G.H. Lacy. 1989. System for simultaneous study of bacterial and plant gene expression in soft rot of potato. Molecular Plant-Microbe Interactions 4: 195–201.Google Scholar
  38. 38.
    Yang, Z., H. Park, G.H. Lacy, C.L. Cramer. 1991. Differential activation of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes by wounding and pathogen challenge. Plant Cell 3: 397–405.PubMedCrossRefGoogle Scholar
  39. 39.
    Zucker, M., M.M. El Zayat. 1968. The effect of cycloheximide on the resistance of potato tuber discs to invasion by a fluorescent pseudomonad. Phytopathol 58: 339–344.Google Scholar
  40. 40.
    Zucker, M., L. Hankin. 1970. Physiological basis for cycloheximide-induced soft rot of potatoes byPseudomonas fluorescens. Ann Botany 34: 1047–1062.Google Scholar

Copyright information

© Springer 1992

Authors and Affiliations

  • Michael E. Vayda
    • 1
  • Lyudmil S. Antonov
    • 2
    • 3
  • Z. Yang
    • 3
  • William O. Butler
    • 4
  • George H. Lacy
    • 2
    • 3
  1. 1.Department of BiochemistryUniversity of MaineOrono
  2. 2.University Center for Environmental and Hazardous Materials Studies, Department of BiologyVirginia Polytechnic Institute and State UniversityBlacksburg
  3. 3.Laboratory for Molecular Biology of Plant Stress, Department of Plant Pathology, Physiology and Weed ScienceVirginia Polytechnic Institute and State UniversityBlacksburg
  4. 4.SIBIA, Inc.San Diego

Personalised recommendations