American Potato Journal

, Volume 68, Issue 11, pp 781–794 | Cite as

Jasmonates and their role in plant growth and development, with special reference to the control of potato tuberization: A review

  • Jan H. van den Berg
  • Elmer E. Ewing


Jasmonic acid and closely related compounds show growth regulating properties in plants. They have been found in more than 30 plant species. In this paper we review what is known about the jasmonate biosynthetic pathway, biological activities, and mode of action. We also discuss the possible role of jasmonates in potato tuberization.

Additional Key Words

Jasmonic acid methyl jasmonate tuberonic acid tuber inducing substance senescence growth inhibition Solanum tuberosum L. 


Ácido jasmonic y compuestos emparentados muestran tener propiedades como reguladores de crecimiento en plantas. Ellos han sido encontrados en más de 30 especies de plantas. En este reporte nosotros revisamos lo que es conocido acerca del camino biosintético del jasmonate, sus actividades biológicas y su modo de acción. Nosotros tambien discutimos el posible aporte de los jasmonates en la indución de los tubérculos de la papa.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Aldridge, D.C., S. Galt, D. Giles and W.B. Turner. 1971. Metabolites ofLasiodiplodia theobromae. J Chem Soc (C): 1623–1627.Google Scholar
  2. 2.
    Anderson, J.M. 1985. Simultaneous determination of abscisic acid and jasmonic acid in plant extracts using high-performance liquid chromatography. J Chromatogr 330:347–355.CrossRefGoogle Scholar
  3. 3.
    Anderson, J.M. 1988. Jasmonic acid-dependent increases in the level of specific polypeptides in soybean suspension cultures and seedlings. J Plant Growth Regul 7:203–211.CrossRefGoogle Scholar
  4. 4.
    Anderson, J.M. 1989. Membrane-derived fatty acids as precursors to second messengers.In: W.F. Boss and D.J. Morre, eds. Second messengers in plant growth and development. Alan R. Liss, Inc., New York. pp. 181–212.Google Scholar
  5. 5.
    Axelrod, B. 1974. Lipoxygenases:In: J. R. Whitaker, ed. Food related enzymes. Advances in Chemistry Series 136, Washington, pp. 324–348.Google Scholar
  6. 6.
    Berkeley, H.D. and T. Galliard. 1974. Lipids of potato tubers III. Effect of growth and storage on lipid content of the potato tuber. J Sci Food Agric 25:861–867.PubMedCrossRefGoogle Scholar
  7. 7.
    Bodlaender, K.B.A. 1963. Influence of temperature, radiation and photoperiod in development and yield.In: J.D. Ivins and F.L. Milthorpe, eds. Growth of the potato. Buttersworth, London. pp. 199–207.Google Scholar
  8. 8.
    Crabalona, L. 1967. Presence of levoratory methyl jasmonate, methyl cis-2-(2-penten-1-yl)-3-oxocyclopentenyl acetate, in the essential oil of Tunisian rosemary. Comp Rend Acad Sci Paris serie C, 264:2074–2076.Google Scholar
  9. 9.
    Dathe, W., O. Miersch and J. Schmidt. 1989. Occurrence of jasmonic acid, related compounds and abscisic acid in fertile and sterile fronds of threeEquisetum species. Biochem Physiol Pflanzen 185:83–92.Google Scholar
  10. 10.
    Dathe, W., H. Rönsch, A. Preiss, W. Schade, G. Sembdner and K. Schreiber. 1981. Endogenous plant hormones of the broad bean,Vicia faba L. (-) jasmonic acid, a plant growth inhibitor in pericarp. Planta 153:530–535.CrossRefGoogle Scholar
  11. 11.
    Demole, E., E. Lederer and D. Mercier. 1962. Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de l’essence de jasmin. Helv Chim Acta 45:675–685.CrossRefGoogle Scholar
  12. 12.
    Driver, C.M. and J.G. Hawkes. 1943. Photoperiodism in the potato. Bull Imper Bureau Plant Breed Genetics, Cambridge. 35 pp.Google Scholar
  13. 13.
    Duncan, D.A. and E.E. Ewing. 1984. Initial anatomical changes associated with tuber formation on single-node potato (Solanum tuberosum L.) cuttings. Ann Bot 53:607–610.Google Scholar
  14. 14.
    El-Antably, H.M.M., P.F. Wareing and J. Hillman. 1967. Some physiological responses to d,1-abscisin (dormin.). Planta 73:74–90.CrossRefGoogle Scholar
  15. 15.
    Engvild, K.C. 1989. The death hormone hypothesis. Physiol Plant 77:282–285.CrossRefGoogle Scholar
  16. 16.
    Ewing, E.E. 1985. Cuttings as simplified models of the potato plant.In: P.H. Li, ed. Potato physiology. Academic Press, New York. pp. 153–207.Google Scholar
  17. 17.
    Ewing, E.E. 1990. Induction of tuberization in potato.In: M.E. Vayda and W.D. Park, eds. The molecular and cellular biology of the potato. C.A.B. International, Wallingford, U.K. pp. 25–41.Google Scholar
  18. 18.
    Farmer, E.E. and C.A. Ryan. 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716.PubMedCrossRefGoogle Scholar
  19. 19.
    Hamberg, M. 1987. Mechanism of corn hydroperoxide isomerase: detection of 12,13(S)-oxido-9(Z),11-octadecadienoic acid. Biochem Biophys Acta 920:76–84.Google Scholar
  20. 20.
    Hamberg, M. and P. Fahlstadius. 1990. Allene oxide cyclase: a new enzyme in plant lipid metabolism. Arch Biochem Biophys 276:518–526.PubMedCrossRefGoogle Scholar
  21. 21.
    Hammes, P.S. and P.C. Nel. 1975. Control mechanisms in the tuberization process. Potato Res 18:2562–2574.CrossRefGoogle Scholar
  22. 22.
    Herrmann, G., J. Lehmann, A. Peterson, G. Sembdner, R.A. Weidhase and B. Parthier. 1989. Species and tissue specificity of jasmonate-induced abundant proteins. J Plant Physiol 134:703–709.Google Scholar
  23. 23.
    Hill, R.K. and A.G. Edwards. 1965. The absolute configuration of methyl jasmonate. Tetrahedron 21:1501–1507.CrossRefGoogle Scholar
  24. 24.
    Knöfel, H-D., C. Bruckner, R. Kramell, G. Sembdner and K. Schreiber. 1984. A radioimmunoassay for jasmonic acid. Biochem Physiol Pflanzen 179:317–325.Google Scholar
  25. 25.
    Koda, Y. and Y. Okazawa. 1988. Detection of potato tuber-inducing activity in potato leaves and old tubers. Plant Cell Physiol 29:969–974.Google Scholar
  26. 26.
    Koda, Y., E.A. Omer, T. Yoshihara, H. Shibata, S. Sakamura and Y. Okazawa. 1988. Isolation of a specific potato tuber-inducing substance from potato leaves. Plant Cell Physiol 29:1047–1051.Google Scholar
  27. 27.
    Koda, Y., T. Sakamura and Y. Kikuta. 1988. Comparison of biological activities of the potato tuber inducing-substance, jasmonic acid and its derivatives.In: R.P. Pharis and S.B. Rood, eds. Abstracts 13th International Conference on Plant Growth Substances. Calgary. Abstract 404.Google Scholar
  28. 28.
    Krauss, A. and H. Marschner. 1982. Influence of nitrogen nutrition, day-length and temperature on contents of gibberellic and abscisic acid and on tuberization in potato plants. Potato Res 25:13–21.CrossRefGoogle Scholar
  29. 29.
    Krug, H. 1960. Zum photoperiodischen Verhalten einiger Kartoffelsorten. I., II. Eur Potato J 3:47–79; 107–136.CrossRefGoogle Scholar
  30. 30.
    Kumar, D. and Wareing, P.F. 1974. Studies on tuberization ofSolanum andigena. New Phytol 73:833–840.CrossRefGoogle Scholar
  31. 31.
    Lorenzen, J.H. and E.E. Ewing. 1990. Changes in tuberization and assimilate partitioning in potato (Solanum tuberosum) during the first days of photoperiod treatment. Ann Bot 66:457–464. Also see erratum, Ann Bot 67:191.Google Scholar
  32. 32.
    Lulai, E.C. 1988. Induction of lipoxygenase activity increases: a response to tuber wounding. (abs.) Am Potato J 65:490.Google Scholar
  33. 33.
    Madec, P. and P. Perennec. 1962. Les réalisations entre l’induction de la tubérisation et la croissance chez la plante de pomme de terre (Solanum tuberosum L.). Ann Physiol Veg 4:5–84.Google Scholar
  34. 34.
    Maslenkova, L.T., Y. Zanev and L.P. Popova. 1990. Oxygen-evolving activity of thylakoids from barley plants cultivated on different concentrations of jasmonic acid. Plant Physiol 93:1316–1320.PubMedGoogle Scholar
  35. 35.
    Mason, H.S. and J.E. Mullet. 1990. Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell 2:569–579.PubMedCrossRefGoogle Scholar
  36. 36.
    McGrady, J.J. and E.E. Ewing. 1990. Potato cuttings as models to study maturation and senescence. Potato Res 33:97–108.CrossRefGoogle Scholar
  37. 37.
    Melis, R.J.M. and J. van Staden. 1984. Tuberization and hormones. Z Pflanzenphysiol 113:271–283.Google Scholar
  38. 38.
    Meyer, A., O. Miersch, C. Buttner, W. Dathe and G. Sembdner. 1984. Occurrence of the plant growth regulator jasmonic acid in plants. J Plant Growth Regulators 3:1–8.CrossRefGoogle Scholar
  39. 39.
    Miersch, O., G. Herrmann, H.M. Kramell and G. Sembdner. 1987. Biological activity of jasmonic acid glucosyl ester. Biochem Physiol Pflanzen 182:425–428.Google Scholar
  40. 40.
    Miersch, O., A. Meyer, S. Vorkefeld and G. Sembdner. 1986. Occurrence of (+)-7-iso-jasmonic acid inVicia faba L. and its biological activity. J Plant Growth Regul 5:91–100.CrossRefGoogle Scholar
  41. 41.
    Okazawa, Y. 1960. Studies on the relation between the tuber formation of the potato plant, and its natural gibberellin content. (in Japanese) Proc Crop Sci Soc Japan 29:121–124.Google Scholar
  42. 42.
    Paiva, E., R.M. Lister and W.D. Park. 1983. Induction and accumulation of major tuber proteins of potato in stems and petioles. Plant Physiol 71:161–168.PubMedGoogle Scholar
  43. 43.
    Park, W.D. 1990. Molecular approaches to tuberization in potato.In: M.E. Vayda and W.D. Park, eds. The molecular and cellular biology of the potato. C.A.B. International, Wallingford, U.K. pp. 43–56.Google Scholar
  44. 44.
    Parthier, B. 1990. Jasmonates: Hormonal regulators or stress factors in leaf senescence? J Plant Growth Regul 9:57–63.CrossRefGoogle Scholar
  45. 45.
    Paupardin, C. and R. Tizio. 1970. Action de quelques composés phénoliques sur la tubérisation de la pomme de terre. Potato Res 13:187–198.CrossRefGoogle Scholar
  46. 46.
    Pinsky, A., S. Grossman and M. Trop. 1971. Lipoxygenase content and antioxidant activity of some fruits and vegetables. J Food Sci 36:571–572.CrossRefGoogle Scholar
  47. 47.
    Pont-Lezica, R.K. 1970. Evolution des substances de type gibbérellines chez la pomme de terre pendant la tubérisation, en relation avec la longueur du jour et la température. Potato Res 13:323–331.CrossRefGoogle Scholar
  48. 48.
    Ravid, U., R. Ika and R.M. Sachs. 1975. Structures related to jasmonic acid and their effect on lettuce seedling growth. J Agric Food Chem 23:835–838.PubMedCrossRefGoogle Scholar
  49. 49.
    Ravnikar, M. and N. Gogala. 1990. Regulation of potato meristem development by jasmonic acid in vitro. J Plant Growth Regul 9:233–236.CrossRefGoogle Scholar
  50. 50.
    Sanchez-Serrano, J.J., S. Amati, M. Keil, H. Pena-Cortes, S. Prat, C. Recknagel and L. Willmitzer. 1990. Stress responses and disease resistance.In: M.E. Vayda and W.D. Park, eds. The molecular and cellular biology of the potato. C.A.B. International, Wallingford, U.K. pp. 57–69.Google Scholar
  51. 51.
    Saniewski, M. and J. Czapski. 1983. The effect of methyl jasmonate on lycopene and β-carotene accumulation in ripening red tomatoes. Experientia 39:1373–1374.CrossRefGoogle Scholar
  52. 52.
    Saniewski, M. and J. Czapski. 1985. Stimulatory effect of methyl jasmonate on the ethylene production in tomato fruits. Experientia 41:256–257.CrossRefGoogle Scholar
  53. 53.
    Saniewski, M., J. Czapski and J. Nowacki. 1987. Relationship between stimulatory effect of methyl jasmonate on ethylene production and 1-aminocyclopropane-1-carboxylic acid content in tomatoes. Biol Plant (Praha) 17:17–21.Google Scholar
  54. 54.
    Satler, S.O. and K.V. Thimann. 1981. Le jasmonate de méthyle: nouveau et puissant promoteur de la sénescence des feuilles. Comp Rend Acad Sci Paris, série 3 293:735–740.Google Scholar
  55. 55.
    Sembdner, G. and C. Klose. 1985. (-)-Jasmonsaure-ein neues Phytohormon? Biol Rundschau 23:29–40.Google Scholar
  56. 56.
    Smith, O.E. and L. Rappaport. 1969. Gibberellins, inhibitors, and tuber formation in the potato,Solanum tuberosum. Am Potato J 46:185–191.Google Scholar
  57. 57.
    Stallknecht, G.E and S. Farnsworth. 1982. General characteristics of coumarininduced tuberization of axillary shoots ofSolanum tuberosum L. culturedin vitro. Am Potato J 59:17–32.CrossRefGoogle Scholar
  58. 58.
    Staswick, P.A. 1990. Novel regulation of vegetative storage protein genes. Plant Cell 2:1–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Steward, EC, U. Moreno and W.M. Roca. 1981. Growth, form and composition of potato plants as affected by environment. Ann Bot 48, Supplement No. 2, 45 pp.Google Scholar
  60. 60.
    Turner, A.D. and E.E. Ewing. 1988. Effects of photoperiod, night temperature, and irradiance on flower production in the potato. Potato Res 31:257–268.CrossRefGoogle Scholar
  61. 61.
    Ueda, J. and J. Kato. 1980. Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol. 66:246–249.PubMedCrossRefGoogle Scholar
  62. 62.
    Ueda, J. and J. Kato. 1982a. Identification of jasmonic acid and abscisic acid as senescence-promoting substances fromCleyera ochnacea DC. Agric Biol Chem 41:1975–1976.Google Scholar
  63. 63.
    Ueda, J. and J. Kato. 1982b. Inhibition of cytokinin-induced plant growth by jasmonic acid and its methyl ester. Physiol Plant 54:249–252.CrossRefGoogle Scholar
  64. 64.
    Ueda, J., J. Kato, H. Yamane and N. Takahashi. 1981. Inhibitory effect of methyl jasmonate and its related compounds on kinetin-induced retardation of oat leaf senescence. Physiol Plant 52:305–309.CrossRefGoogle Scholar
  65. 65.
    Vick, B.A. and D.C. Zimmerman. 1976. Lipoxygenase and hydroperoxide lyase in germinating watermelon seedlings. Plant Physiol 57:780–788.PubMedGoogle Scholar
  66. 66.
    Vick, B.A. and D.C. Zimmerman. 1979. Distribution of fatty acid cyclase enzyme system in plants. Plant Physiol 64:203–205.PubMedGoogle Scholar
  67. 67.
    Vick, B.A. and D.C. Zimmerman. 1983. The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Commun 111:470–477.PubMedCrossRefGoogle Scholar
  68. 68.
    Vick, B.A. and D.C. Zimmerman. 1984. Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75:458–461.PubMedCrossRefGoogle Scholar
  69. 69.
    Vick, B.A. and D.C. Zimmerman. 1986. Characterization of 12-oxo-phytodienoic acid reductase in corn (the jasmonic acid pathway). Plant Physiol 80:202–205.PubMedGoogle Scholar
  70. 70.
    Vick, B.A. and D.C. Zimmerman. 1987a. Pathways of fatty acid hydroperoxide metabolism in spinach chloroplasts. Plant Physiol 85:1073–1078.PubMedGoogle Scholar
  71. 71.
    Vick, B.A. and D.C. Zimmerman. 1987b. Oxidative systems for modification of fatty acids: The lipoxygenase pathway.In: P.K. Stumpf, ed. Biochemistry of plants, a comprehensive treatise. Volume 9. Lipids: structure and function. Academic Press, New York. pp. 53–90.Google Scholar
  72. 72.
    Vreugdenhil, D. and P.C. Struik. 1989. An integrated view of the hormonal regulation of tuber formation in potato (Solanum tuberosum). Physiol Plant 75:525–531.CrossRefGoogle Scholar
  73. 73.
    Weidhase, R.A., H.M. Kramell, J. Lehmann, H.W. Liebisch, W. Lerbs and B. Parthier. 1987. Methyl jasmonate induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Science 51:177–186.CrossRefGoogle Scholar
  74. 74.
    Yamane, H., H. Abe and N. Takahashi. 1982. Jasmonic acid and methyl jasmonate in pollens and anthers of threeCamellia species. Plant Cell Physiol 23:1125–1127.Google Scholar
  75. 75.
    Yamane, H., J. Sugawara, Y. Suzuki, E. Shimamura and N. Takahashi. 1980. Synthesis of jasmonic acid related compounds and their structure-activity relationships on the growth of rice seedlings. Agric Biol Chem 44:2857–2864.Google Scholar
  76. 76.
    Yamane, H., H. Takagi, H. Abe, T. Yokota and N. Takahashi. 1981. Identification of jasmonic acid in three species of higher plants and its biologic activity. Plant Cell Physiol 22:689–697.Google Scholar
  77. 77.
    Yamane, H., N. Takahashi, J. Ueda and J. Kato. 1981. Resolution of (±)-methyl jasmonate by high performance liquid chromatography and the inhibitory effect of (+)-enantiomer on the growth of rice seedlings. Agric Biol Chem 45:1709–1711.Google Scholar
  78. 78.
    Yoshihara, T. and Y. Koda. 1989. Physiology and chemistry of the tuber-inducing substance in potato. (in Japanese) Kagaku to seibutsu (Kaseaa) 27:53–58.Google Scholar
  79. 79.
    Yoshihara, T., E.A. Omer, H. Koshino, S. Sakamura, Y. Kikuta and Y. Koda. 1989. Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agric Biol Chem 53:2835–2837.Google Scholar
  80. 80.
    Zimmerman, D.C. 1966. A new product of linoleic acid oxidation by a flaxseed enzyme. Biochem Biophys Res Commun 23:398–402.PubMedCrossRefGoogle Scholar
  81. 81.
    Zimmerman, D.C. and P. Feng. 1978. Characterization of a prostaglandin-like metabolite of linolenic acid produced by a flaxseed extract. Lipids 13:313–316.CrossRefGoogle Scholar

Copyright information

© Springer 1991

Authors and Affiliations

  • Jan H. van den Berg
    • 1
  • Elmer E. Ewing
    • 2
  1. 1.Field of Vegetable CropsCornell UniversityUSA
  2. 2.Department of Fruit and Vegetable ScienceCornell UniversityIthaca

Personalised recommendations