American Journal of Potato Research

, Volume 82, Issue 3, pp 231–239 | Cite as

Investigations on the role of acid invertase and UDP-glucose pyrophosphorylase in potato clones with varying resistance to cold-induced sweetening

  • Marian J. McKenzieEmail author
  • Joseph R. Sowokinos
  • Irene M. Shea
  • Sanjay K. Gupta
  • Rebecca R. Lindlauf
  • John A. D. Anderson


Fifteen potato (Solanum tuberosum L.) clones with varying resistance to cold-induced sweetening were analysed for vacuolar acid invertase (AcInv, EC and UDP-Glc pyrophosphorylase (UGPase; EC activities related to their ability to accumulate sugars following cold storage (4 C). The UGPase isozyme profiles for each clone were also determined. Immunoblot analysis demonstrated a 55 kD protein, in seven of the 15 clones, that reacted with UGPase antisera in addition to the 53 kD UGPase subunit previously reported. The UGPase activity of these clones was significantly lower than that of the “single subunit” clones. Basal AcInv activity showed a positive correlation to the Glc:Suc ratio across the clones that was moderately significant before and after cold temperature storage. The activity of UGPase, which limits the rate of Suc formation, was of secondary importance in limiting the rate of hexogenesis when vacuolar AcInv activity was excessive. It is suggested that with the potato clones from this breeding program that AcInv (and its inhibitor) plays a dominant role in the hexogenic pathway by regulating the hexose:Suc ratio. The finding of a new protein that is reactive with UGPase antisera may prove to play an important function in the regulation of Suc formation in potatoes.

Additional Key Words

cold storage invertase inhibitor processing sugars 



cold-induced sweetening




fresh weight






acid invertase


sucrose phosphate synthase




Tris-buffered saline


uridine-5’-diphosphoglucose pyrophosphorylase




Quince clones de papa (Solanum tuberosum L.) con varios grados de resistencia al endulzamiento inducida por el frío, fueron analizados para invertasa ácida (AcInv; EC vacuolar y actividades de UDP-Glc fosforilasa (UGPasa; EC, relacionadas con su habilidad para acumular azucares después de su almacenamiento en frío (4 C). También se determinaron para cada clon los perfiles de la isoenzima UGPasa. El análisis inmunoblot demostró en siete de los 15 clones una proteína kD que reaccionó con el antisuero UGPasa cuando se agregó a la subunidad 53 kD UGPasa previamente reportadas. La actividad de UGPasa en estos clones fue significativamente mas baja que la de los clones de la “subunidad simple.” La actividad basal del AcInv demostró una correlación positiva con la proporción Glc: Sac en los clones que fueron moderadamente significativos antes y después del almacenamiento a baja temperatura. La actividad de la UGPasa la cual imita la tasa de formación de sacarosa, fue de importancia secundaria en limitar la tasa de hexogénesis cuando la actividad vacuolar del AcInv fue excesiva. Se sugiere que con los clones de papa de este programa, el AcInv (y su inhibidor) juega un rol dominante en la vía hexogénica regulando la proorción hexosa: sacarosa. El hallazgo de una nueva proteína que reacciona con el antisuero UGPasa, puede evidenciar que esta juega una función importante en regular la formación de sacarosa en papa.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson JAD, SL Lewthwaite, RA Genet, D Gallagher, and F Braam. 1993. ‘Karaka’: a new fresh market potato with high resistance toGlobodera plallida andG. rostochiensis. NZ J Crop and Hort Sci 21: 95–97.Google Scholar
  2. de Rees T, and S Morrell. 1990. Carbohydrate metabolism in developing potatoes. Am Potato J 67: 835–847.Google Scholar
  3. Ashwell G. 1957. Colorimetric analysis of sugars.In: SP Colwick and NO Kaplan (eds), Methods of Enzymology, vol III. Academic Press, New York. pp 73–105.Google Scholar
  4. Borovkov AY, PE McClean, JR Sowokinos, SH Ruud, and GA Secor. 1996. Effect of expression of UDP-glucose pyrophosphorylase ribozyme and antisense RNAs on the enzyme activity and carbohydrate composition of field-grown transgenic potato plants. J Plant Physiol 147: 644–652.Google Scholar
  5. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein untilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.PubMedCrossRefGoogle Scholar
  6. Ciereszko I, H Johansson, V Hurry, and LA Kleczkowski. 2001. Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wildtype andpho mutants ofArabidopsis. Planta 212: 598–605.PubMedCrossRefGoogle Scholar
  7. Cottrell JE, CM Duffus, L Paterson, GR MacKay, MJ Allison, and H Bain. 1993. The effect of storage temperature on reducing sugar concentration and the activities of three amylolytic enzymes in tubers of the cultivated potato,Solanum tuberosum L. Potato Res 36: 107–117.CrossRefGoogle Scholar
  8. Fick RJ, and RC Brook. 1999. Threshold sugar concentrations in Snowden potatoes during storage. Amer J Potato Res 76: 357–362.Google Scholar
  9. Greiner S, T Rausch, U Sonnewald, and K Herbers. 1999. Ectopic expression of a tobacco invertase inhibitor homolog prevents coldinduced sweetening of potato tubers. Nat Biotech 17(7): 708–711.CrossRefGoogle Scholar
  10. Gupta SK, and JR Sowokinos. 2003. Physicochemical and kinetic properties of unique isozymes of UDP-Glc pyrophosphorylase that are associated with resistance to sweetening in cold-stored tubers. J Plant Physiol 160(6): 589–600.PubMedCrossRefGoogle Scholar
  11. Hill LM, R Reimholz, R Schroder, T Nielson, and M Stitt. 1996. The onset of sucrose accumulation in cold stored potato tubers is caused by an increased rate of sucrose synthesis and coincides with low levels of hexose phosphates, an activation of sucrose phosphate synthase and the appearance of a new form of amylase. Plant Cell Environ 19: 1223–1237.CrossRefGoogle Scholar
  12. Kleczkowski LA, M Geisler, I Ciereszko, and H Johansson. 2004. UDP-glucose pyrophosphoryalse. An old protein with new tricks. Plant Physiol 134: 912–918.PubMedCrossRefGoogle Scholar
  13. Krause KP, L Hill, R Reimholz, T Hamborg Nielsen, U Sonnewald, and M Stitt. 1998. Sucrose metabolism in cold-stored potato tubers with decreased expression of sucrose phosphate synthase. Plant Cell Environ 21: 285–299.CrossRefGoogle Scholar
  14. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.PubMedCrossRefGoogle Scholar
  15. LeGendre N, and P Matsudaira. 1988. Direct microsequencing from Immobilon-P transfer membrane. BioTechniques 6: 154–159.PubMedGoogle Scholar
  16. Manchencko GP. 1994. Method of detection of specific enzymes.In: GP Manchencko (ed), Handbook of Detection of Enzymes on Electrophoretic Gels. CRC Press, Boca Raton, FL. p 20.Google Scholar
  17. Menendez CM, E Ritter, R Schafer-Pregl, B Walkemeire, A Kalde, F Salamini, and C Gebhardt. 2002. Cold sweetening in diploid potato: Mapping quantitative trait loci and candidate genes. Genetics 162: 1423–1434.PubMedGoogle Scholar
  18. Nielsen TH, U Deiting, and M Stitt. 1997. A _-amylase in potato tubers is induced by storage at low temperature. Plant Physiol 113: 503–510.PubMedCrossRefGoogle Scholar
  19. Pressey R. 1966. Separation and properties of potato invertase and invertase inhibitor. Arch Biochem Biophys 113: 667–674.PubMedCrossRefGoogle Scholar
  20. Pressey R, and R Shaw. 1966. Effect of temperature on invertase, invertase inhibitor, and sugars in potato tubers. Plant Physiol 41: 1657–1661.PubMedCrossRefGoogle Scholar
  21. Reimholz R, M Geiger, V Haake, U Deiting, K-P Kruase, U Sonnewald, and M Stitt. 1997. Potato plants contain multiple forms of sucrose phosphate synthase, which differ in their tissue distributions, their levels during development, and their responses to low temperature. Plant Cell Environ 20: 291–305.CrossRefGoogle Scholar
  22. Richardson DL, HV Davies, HA Ross, and GR Mackay. 1990. Invertase activity and its relation to hexose accumulation in potato tubers. J Exp Bot 41: 95–99.CrossRefGoogle Scholar
  23. Schallenberger RS, O Smith, and RH Treadway. 1959. Role of sugars in the browning reaction in potato chips. J Agric Food Chem 7: 274–277.CrossRefGoogle Scholar
  24. Sowokinos JR. 2001a. Biochemical and molecular control of coldinduced sweetening in potatoes: Invited Review. Amer J Potato Res 78: 221–236.Google Scholar
  25. Sowokinos JR. 2001b. Allele and isozyme patterns of UDP-glucose pyrophosphorylase as a marker for cold-sweetening resistance in potatoes. Amer J Potato Res 78: 57–64.Google Scholar
  26. Sowokinos JR, JP Spychalla, and SL Desborough. 1993. Pyrophosphorylases inSolanum tuberosum IV. Purification, tissue localization, and physicochemical properties of UGP-glucose pyrophosphorylase. Plant Physiol 101: 1073–1080.PubMedGoogle Scholar
  27. Sowokinos JR, C Thomas, and MM Burrell. 1997. Pyrophosphorylases in potato. V. Allelic poylmorphism of UDP-glucose pyrophosphorylase in potato cultivars and its association with tuber resistance to sweetening in the cold. Plant Physiol 113: 511–517.PubMedCrossRefGoogle Scholar
  28. Sowokinos JR, CC Shock, TD Stieber, and EP Eldredge. 2000. Compositional and enzymatic changes associated with the sugar-end defect in Russet Burbank potatoes. Amer J Potato Res 77: 47–56.Google Scholar
  29. Spychalla JP, BE Scheffler, JR Sowokinos, and MW Bevan. 1994. Cloning, antisense RNA inhibition, and the coordinated expression of UDP-glucose pyrophosphorylase with starch biosynthetic genes in potato tubers. J Plant Physiol 144: 444–453.Google Scholar
  30. Thill CA, and SJ Peloquin. 1994. Inheritance of potato-chip color at the 24-chromosome level. Am Potato J 71: 629–646.CrossRefGoogle Scholar
  31. Zrenner R, L Willmitzer, and U Sonnewald. 1993. Analysis of the expression of potato uridinediphosphate-glucose pyrophosphorylase and its inhibition by antisense RNA. Planta 190: 247–252.PubMedCrossRefGoogle Scholar
  32. Zrenner R, K Schuler, and U Sonnewald. 1996. Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta 198: 246–252.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Marian J. McKenzie
    • 1
    Email author
  • Joseph R. Sowokinos
    • 2
  • Irene M. Shea
    • 2
  • Sanjay K. Gupta
    • 2
  • Rebecca R. Lindlauf
    • 3
  • John A. D. Anderson
    • 4
  1. 1.Food Industry Science CentreThe New Zealand Institute for Crop & Food Research LimitedPalmerston NorthNew Zealand
  2. 2.Department of Horticultural ScienceUniversity of MinnesotaSt. PaulUSA
  3. 3.USDA-ARS Potato Research WorksiteEast Grand ForksUSA
  4. 4.Pukekohe Research CentreThe New Zealand Institute for Crop & Food Research LimitedPukekoheNew Zealand

Personalised recommendations