Rendiconti del Circolo Matematico di Palermo

, Volume 12, Issue 3, pp 257–274 | Cite as

Some extremal questions for simplicial complexes V. The relative area of a Klein bottle

  • L. C. Young


Positive Integer SIMPLICIAL Complex Isoperimetric Inequality Klein Bottle Horizontal Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cesari L.,An existence theorem of the Calculus of Variations for integrals on parametric surfaces, Amer. J. of Math. 74 (1952) 265–295.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Federer H. and Fleming W. H.,Normal and integral currents, Annals of Math. 72 (1960) 458–520.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Hardy G. H., Littlewood J. E. and Polya G.,Inequalities.Google Scholar
  4. [4]
    Seifert H. and Threlfall W.,Topologie.Google Scholar
  5. [5]
    Young L. C., (i)A lemma in the theory of surfaces, J. London Math. Soc. 19 (1944) 209–212. (ii)Generalized surfaces of finite type, Memoirs Amer. Math. Soc. no.17 (1955). (iii)A variational algorithm, Riv. di Mat. Univ. di Parma 5 (1954) 255–268. (iv)Partial area I, II, III, ibidem 10 (1959) 103–113, 171–182, 257–263. (v)Contours on generalized and extremal varieties, J. Math. and Mech. 11 (1962) 615–646. (vi)Some extremal questions for simplicial complexes I. Polyhedral geodesic strips, II.On the radius times periphery problem for area, III.Problems of geometry and analysis in the higher Euclidean Spaces, IV.The algebraic and the geometric resultant, an application of variational methods, Rend. Circ. Mat. Palermo.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer 1963

Authors and Affiliations

  • L. C. Young
    • 1
  1. 1.Madison

Personalised recommendations