Journal of Clinical Monitoring

, Volume 2, Issue 4, pp 270–288 | Cite as

History of blood gas analysis. VI. Oximetry

  • John W. Severinghaus
  • Poul B. Astrup
Historical Review


Oximetry, the measurement of hemoglobin oxygen saturation in either blood or tissue, depends on the Lambert-Beer relationship between light transmission and optical density. Shortly after Bunsen and Kirchhoff invented the spectrometer in 1860, the oxygen transport function of hemoglobin was demonstrated by Stokes and Hoppe-Seyler, who showed color changes produced by aeration of hemoglobin solutions. In 1932 in Göttingen, Germany, Nicolai optically recorded the in vivo oxygen consumption of a hand after circulatory occlusion. Kramer showed that the Lambert-Beer law applied to hemoglobin solutions and approximately to whole blood, and measured saturation by the transmission of red light through unopened arteries. Matthes in Leipzig, Germany, built the first apparatus to measure ear oxygen saturation and introduced a second wavelength (green or infrared) insensitive to saturation to compensate for blood volume and tissue pigments. Millikan built a light-weight car “oximeter” during World War II to train pilots for military aviation. Wood added a pneumatic cuff to obtain a bloodless zero. Brinkman and Zijlstra in Groningen, The Netherlands, showed that red light reflected from the forehead could be used to measure oxygen saturation. Zijlstra initiated cuvette and catheter reflection oximetry. Instrumentation Laboratory used multiple wavelengths to measure blood carboxyhemoglobin and methemoglobin is cuvette oximeters. Shaw devised an eight-wavelength ear oximeter. Nakajima and coworkers invented the pulse oximeter, which avoids the need for calibration with only two wavelengths by responding only to the pulsatile changes in transmitted red and infrared light. Lübbers developed catheter tip and cuvette fiberoptic sensors for oxygen tension, carbon dioxide tension, and pH.

Key Words

Oxygen: saturation Measurement techniques: oximetry spectrophotometry photocells optodes Blood: gas analysis, history 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Comroe JH, Botelho SY. The unreliability of cyanosis in the recognition of arterial anoxemia. Am J Med Sci 1947;214:l-6CrossRefGoogle Scholar
  2. 2.
    Millikan GA. The oximeter: an instrument for measuring continuously oxygen saturation of arterial blood in man. Rev Sci Instrum 1942;13:434–444CrossRefGoogle Scholar
  3. 3.
    Hartman FW, McClure RD. Further studies with photoelectric oxyhemoglobinograph. Ann Surg 1940;112:791–794PubMedGoogle Scholar
  4. 4.
    Hartman FW, Behrmann VG, Chapman FW. Photoelectric oxyhemograph: continuous method for measuring oxygen saturation of blood. Am J Clin Pathol 1948;18:1–13PubMedGoogle Scholar
  5. 5.
    Newton I. Optiks; or a treatise of the reflections, refractions, inflections and colours of light. London: G. Bull, 1672 (reprinted 1931)Google Scholar
  6. 6.
    American Council of Learned Societies. W. H. Wollaston. In: Maurer JF, ed. Dictionary of scientific biography. Vol 14. New York: Scribner’s, 1976:486–494Google Scholar
  7. 7.
    American Council of Learned Societies. J. Frauenhofer. In: Maurer JF, ed. Dictionary of scientific biography. Vol. 5. New York: Scribner’s, 1972:142–144Google Scholar
  8. 8.
    Kirchhoff GR, Bunsen RWE. Chemische Analyse durch Spectralbeobachtungen. Engelmann: Leipzig, 1860Google Scholar
  9. 9.
    Laitinen HA, Ewing GW. A history of analytic chemistry. Washington, DC: American Chemical Society, 1977:110Google Scholar
  10. 10.
    American Council of Learned Societies. N. Bjerrum. In: Maurer JF, ed. Dictionary of scientific biography. Vol. 2. New York: Scribner’s, 1970:169–171Google Scholar
  11. 11.
    Astrup P, Severinghaus JW. The history of blood gases, acids and bases. Copenhagen: Munksgaard, 1986Google Scholar
  12. 12.
    American Council of Learned Societies. A.-E. Becquerel. In: Maurer JF, ed. Dictionary of scientific biography. Vol 1. New York: Scribner’s, 1970:555–556Google Scholar
  13. 13.
    Lambert JH. Photometria, sive de mensura et gradibus luminis, colorum et umbrae. Augsburg, 1760 [translation: Anding E. In: Ostwald W, ed. Klassiker der exakten Wissenschaften. Leipzig: W. Engelmann, 1892: 31–33 (Ger)]Google Scholar
  14. 14.
    Beer A. Versuch der Absorptions-VerhÄltnisse des Cordierites für rothes Licht zu bestimmen. Ann Physik Chem 1851;84:37–52 (Ger)CrossRefGoogle Scholar
  15. 15.
    Stokes GG. On the reduction and oxygenation of the colouring matter of the blood. London, Edinburgh, Dublin philos Mag 1864;28:391Google Scholar
  16. 16.
    Hoppe-Seyler F. über die chemischen und optischen Eigenschafter des Blutfarbstoffs. Arch Pathol Anat Physiol 1864;29:233–251 (Ger)CrossRefGoogle Scholar
  17. 17.
    Vierordt K. Die quantitative Spektralanalyse in ihrer Anwendung auf Physiologie, Chemie und Technologie. Tubingen: H. Laupp’sche Buchhandlung, 1876 (Ger)Google Scholar
  18. 18.
    Hüfner G. über die Bedeutung der in der vorigen Abhandlung vorgettragenen Lehre für die Spectroskopie und Photometrie des Blutes. Arch Physiol (Leipzig) 1890;31:28–30 (Ger)Google Scholar
  19. 19.
    Hüfner G. über die QuantitÄt Sauerstoff welche 1 gramm HÄmoglobin zu binden vermag. Z Physiol Chem 1877;1-2:317–330 (Ger)Google Scholar
  20. 20.
    Hüfner G. über ein neues spektrophotometer. Z Physiol Chem 1889;3:562 (Ger)Google Scholar
  21. 21.
    Barcroft J. The respiratory function of the blood. London: Cambridge University, 1914Google Scholar
  22. 22.
    Krogh A, Leitch I. The respiratory function of the blood in fishes. J Physiol 1919;52:288–300PubMedGoogle Scholar
  23. 23.
    Drabkin DL, Austin JH. Spectrophotometric studies. V. Technique for analysis of undiluted blood and concentrated hemoglobin solutions. J Biol Chem 1935;112:105–115Google Scholar
  24. 24.
    Drabkin DL, Schmidt CF. Observations of circulating blood in vivo, and the direct determination of the saturation of hemoglobin in arterial blood. J Biol Chem 1945;157:69–83Google Scholar
  25. 25.
    Hall FG. Spectroscopic method for determination of oxygen saturation in whole blood. J Biol Chem 1939;130:573–577Google Scholar
  26. 26.
    Evelyn KA, Malloy HT. Micro determination of oxyhemoglobin, methemoglobin and sulfehemoglobin in a single sample of blood. J Biol Chem 1938;126:655–662Google Scholar
  27. 27.
    Horecker BL. The absorption spectra of Hb and its derivatives in the visible and near infra red region. J Biol Chem 1943;148:173–183Google Scholar
  28. 28.
    Drabkin DL. Photometry and spectrophotometry. In: Glasser O, ed. Medical physics. Chicago: Year Book, 1944:967Google Scholar
  29. 29.
    Nicolai L. Uber Sichtbarmachung, Verlauf und chemische Kinetik der Oxyhemoglobinreduktion im lebenden Gewebe, besonders in der menschlichen Haut. Arch Ges Physiol 1932;229:372–389 (Ger)CrossRefGoogle Scholar
  30. 30.
    Kramer K. Bestimmung des Sauerstoffgehaltes und der HÄmoglobin Konzentration in HÄmoglobinlöslungen und hÄmolysierten Blut auf lichtelektrischen Wege. Z Biol 1934;95:126–134 (Ger)Google Scholar
  31. 31.
    Kramer K. Bestimmung des Sauerstoffgehaltes und der HÄmoglobinkonzentration in hÄmoglobinlösungen und hÄmolysiertem Blut auf lichtelektrischem Wege. Klin Wochenschr 1933;12:1875–1876 (Ger)CrossRefGoogle Scholar
  32. 32.
    Kramer K. Ein Verfahren zur fortlaufenden Messung des Saucrstoffgehaltes im stromenden Blute an uneröffneten Gefassen. Z Biol 1935;96:61–75 (Ger) [see also Kramer K, Sarre H. Z Biol 1935;36:76–110]Google Scholar
  33. 33.
    Kramer K, Elam JO, Saxton GA, Elam WN Jr. Influence of oxygen saturation, erythrocytc concentration and optical depth upon the red and near-infrared light transmittance of whole blood. Am J Physiol 1951;165:229–246PubMedGoogle Scholar
  34. 34.
    Matthes K. über den Einfluss der Atmung auf die SauerstoffsÄttingungen des Arterienblutes. Arch Exp Pathol Pharmacol 1934;176:683–696 (Ger)CrossRefGoogle Scholar
  35. 35.
    Matthes K. Untersuchungen über die SauerstoffsÄttingungen des menschlichen Arterienblutes. Arch Exp Pathol Pharmacol 1935;179:698–711 (Ger)CrossRefGoogle Scholar
  36. 36.
    Karl Matthes: in memoriam. Mannheim, FRG: privately printed by C. F. Boehringer & Sohne, ndGoogle Scholar
  37. 37.
    Matthes K, Gross F. Untersuchungen über die Absorption von rotem und ultraotem Licht durch kohlenoxydgesÄttigtes und reduziertes Blut. Arch Exp Pathol Pharmacol 1939;191:369–380 (Ger)CrossRefGoogle Scholar
  38. 38.
    Matthes K, Gross F. Fortlaufende Registrierung der Lichtabsorption des Blutes in zwei verschiedenen Spektralbezirken. Arch Exp Pathol Pharmacol 1939;191:381–390 (Ger)CrossRefGoogle Scholar
  39. 39.
    Matthes K, Gross F. Zur methode der fortlaufenden Registrierung der Farbe des menschlichen Blutes. Arch Exp Pathol Pharmacol 1939;191:523–5287 (Ger)CrossRefGoogle Scholar
  40. 40.
    Squire JR. Instrument for measuring quantity of blood and its degree of oxygenation in web of the hand. Clin Sci 1940;4:331–339Google Scholar
  41. 41.
    Goldie EAG. Device for continuous indication of oxygen saturation of circulating blood in man. J Sci Instrum 19:23, 1942CrossRefGoogle Scholar
  42. 42.
    Millikan GA. A simple photoelectric colorimeter. J Physiol 1933;79:152–157PubMedGoogle Scholar
  43. 43.
    Roughton FJW, Millikan GA. Photoelectric methods of measuring velocity of rapid reactions. Proc R Soc Lond Series A 1936;155:258–361CrossRefGoogle Scholar
  44. 44.
    Millikan GA, Pappenheimer JR, Rawson AJ, Hervey JP. Continuous measurement of oxygen saturation in man. Am J Physiol 1941;133:390Google Scholar
  45. 45.
    Glen Allan Millikan, 1906–1947. Pasadena, Calif: Privately printed by Grant Dahlstrom, Castle Press, courtesy of Clare Millikan, 1947Google Scholar
  46. 46.
    Hemingway AH, Taylor CB. Laboratory tests of oximeter with automatic compensation for vasomotor changes. J Lab Clin Med 1944;29:987–991Google Scholar
  47. 47.
    McClure RD, Behrmann VG, Hartman FW. The control of anoxemia during surgical anesthesia with the aid of an oxyhemograph. Ann Surg 1948;128:685–707Google Scholar
  48. 48.
    Faulconer A, Pender JW, Bickford, RG. The influence of partial pressure of nitrous oxide on the depth of anesthesia and the electroencephalogram in man. Anesthesiology 1949;10:601–609PubMedCrossRefGoogle Scholar
  49. 49.
    Wood E, Geraci JE. Photoelectric determination of arterial oxygen saturation in man. J Lab Clin Med 1949;34:387–401PubMedGoogle Scholar
  50. 50.
    Burchell HB. Symposium on in-vivo photometry of blood in human beings. Proc Mayo Clin 1950;25:377–412Google Scholar
  51. 51.
    Wood EH. Oximetry. In: Classer O, ed. Medical physics. Vol 2. Chicago: Year Book, 1950:664–680Google Scholar
  52. 52.
    Wood EH, Sutterer WF, Donald DE. The monitoring and recording of physiologic variables during closure of ventricular septal defects using extracorporeal circulation. Adv Cardiol 1959;2:61–74Google Scholar
  53. 53.
    Wood EH. Evolution of instrumentation and techniques for the study of cardiovascular dynamics from the thirties to 1980. Ann Biomed Eng 1978;6:250–309PubMedCrossRefGoogle Scholar
  54. 54.
    Nahas GG. Spectrophotometric determination of hemoglobin and oxyhemoglobin in whole hemolyzed blood. Science 1951;113:723–725PubMedCrossRefGoogle Scholar
  55. 55.
    Nahas GG. A simplified lucite cuvette for the spectrophotometric measurement of hemoglobin and oxyhemoglobin. J Appl Physiol 1958;13:147–152PubMedGoogle Scholar
  56. 56.
    Bjure J, Nilsson NJ. Spectrophotometric determination ot oxygen saturation of hemoglobin in the presence of carboxyhemoglobin. Scand J Clin Lab Invest 1965;17:491–500PubMedCrossRefGoogle Scholar
  57. 57.
    Siggaard-Andersen O, Jorgensen K, Naeraa N. Spectrophotometric determination of oxygen saturation in capillary blood. Scand J Clin Lab Invest 1962;14:298–302CrossRefGoogle Scholar
  58. 58.
    Hellung-Larsen P, Kjeldsen K, Mellemgaard K, Astrup P. Photometric determination of oxyhemoglobin saturation in the presence of carbon monoxide hemoglobin, especially at low oxygen tensions. Scand J Clin Lab Invest 1966;18:443–449PubMedCrossRefGoogle Scholar
  59. 59.
    Rem J, Siggaard-Andersen O, NØrgaard-Pedersen B, SØrensen S. Hemoglobin pigments. II. Photometer for oxygen saturation, carboxyhemoglobin, and methemoglobin in capillary blood. Clin Chim Acta 1972;42:101–108PubMedCrossRefGoogle Scholar
  60. 60.
    Siggaard-Andersen O. Experiences with a new direct reading oxygen saturation photometer using ultrasound for hemolyzing the blood. Scand J Clin Lab Invest 1977;37(Suppl 146):3–8Google Scholar
  61. 61.
    Siggaard-Andersen O, NØrgaard-Pedersen B, Rem J. Hemoglobin pigments. I. Spectrophotometric determination of oxy-, carboxy-, met-, and sulfhemoglobin in capillary blood. Clin Chim Acta 1972;42:85–100PubMedCrossRefGoogle Scholar
  62. 62.
    Maas AHJ, Zuijdgeest PWA, Kreukniet J. Microspectrophotometric determination of the haemoglobin oxygen saturation in haemolyzed arterialized capillary blood. Clin Chim Acta 1964;9:236–240PubMedCrossRefGoogle Scholar
  63. 63.
    Clerbaux T, Fesler R, Bourgeois J. A dynamic method for continuous recording of the whole blood oxyhemoglobin dissociation curve at constant temperature, pH and Pco2. J Med Lab Technol 1973;30:l-9Google Scholar
  64. 64.
    Colman CH, Longmuir IS. A new method for registration of oxyhemoglobin dissociation curves. J Appl Physiol 1963;18:420–423PubMedGoogle Scholar
  65. 65.
    Dijkhuizen P, Buursma A, Fongers RME, et al. The oxygen binding capacity of human hemoglobin. Pflügers Arch 1977;369:223–231PubMedCrossRefGoogle Scholar
  66. 66.
    Duc G, Engel K. A method for determination of oxyhemoglobin dissociation curves at constant temperature, pH, and Pco2. Respir Physiol 1969;8:118–126PubMedCrossRefGoogle Scholar
  67. 67.
    Duvelleroy M, Buckles RG, Rosenhaimer S, et al. An oxyhcmoglobin dissociation analyzer. J Appl Physiol 1970;28:227–233PubMedGoogle Scholar
  68. 68.
    Haab PE, Piiper J, Rahn H. Simple method of rapid determination of an O2 dissociation curve of the blood. J Appl Physiol 1960;15:1148–1149PubMedGoogle Scholar
  69. 69.
    Imai K, Morimoto H, Kotani M, et al. Studies on the function of abnormal hemoglobins. I. An improved method for automatic measurement of the oxygen equilibrium curve of hemoglobin. Biochim Biophys Acta 1970;200:189–196PubMedGoogle Scholar
  70. 70.
    Lambertsen CJ, Bunce PL, Drabkin DL, Schmidt CF. Relationship of oxygen tension to hemoglobin oxygen saturation in arterial blood of normal men. J Appl Physiol 1952;4:873–885PubMedGoogle Scholar
  71. 71.
    Longmuir IS, Chow J. Rapid method for determining effect of agents on oxyhcmoglobin dissociation curves. J Appl Physiol 1970;28:343–345PubMedGoogle Scholar
  72. 72.
    Neisel W, Thews G. Ein neues Verfahren zur schnellen und genauen Aufnahme der Sauerstoffbindungskurve des Blutes und konzentrierter HÄmoproteinlösungen. Arch Ges Physiol 1961;273:380–395 (Ger)CrossRefGoogle Scholar
  73. 73.
    Reeves RB. A rapid micro method for obtaining oxygen equilibrium curves on whole blood. Respir Physiol 1980;42:299–315PubMedCrossRefGoogle Scholar
  74. 74.
    Rossi-Bernardi L, Luzzana M, Samaja M, et al. Continuous determination of the oxygen dissociation curve for whole blood. Clin Chem 1975;21:1747–1753PubMedGoogle Scholar
  75. 75.
    Teisseire B, Teisseirc L, Lautier A, et al. A method of continuous recording on microsamples of the Hb-O2 association curve. I. Technique and direct registration of standard results. Bull Physiol Pathol Respir 1973;11:837–851Google Scholar
  76. 76.
    Zwart A, Kwant G, Oeseburg B, Zijlstra WG. Oxygen dissociation curves for whole blood, recorded with an instrument that continuously measures PO2 and SO2 independently at constant T, Pco2, and pH. Clin Chem 1982;28:1287–1292PubMedGoogle Scholar
  77. 77.
    Brinkman R, Zijlstra WG. Determination and continuous registration of the percentage oxygen saturation in small amounts of blood. Arch Chir Neerl 1949;1:177–183PubMedGoogle Scholar
  78. 78.
    Brinkman R, Wildschut AJH. Clinical method for rapid and accurate determination of oxygen saturation in small amounts of blood. Acta Med Scand 1938;94:459–466CrossRefGoogle Scholar
  79. 79.
    Jonxis JHP. Determination of oxygen saturation in small amounts of blood, by means of Pulfrich step photometer. Acta Med Scand 1938;94:467–471CrossRefGoogle Scholar
  80. 80.
    Zijlstra WG. Fundamentals and applications of clinical oximetry. 2nd ed. Assen, The Netherlands: Van Gorcum, 1953;1–134Google Scholar
  81. 81.
    Polanyi ML, Hehir RM. New reflection oximeter. Rev Sci Instrum 1960;31:401–403CrossRefGoogle Scholar
  82. 82.
    Enson Y, Briscoe WA, Polanyi ML, Cournand A. In vivo studies with an intravascular and intracardiac reflection oximeter. J Appl Physiol 1962;17:552–558PubMedGoogle Scholar
  83. 83.
    Enson Y, Jameson AG, Cournand A. Intracardiac oximetry in congenital heart disease. Circulation 1964;29:499–507PubMedGoogle Scholar
  84. 84.
    Zijlstra WG. A manual of reflection oximetry. Assen, The Netherlands: Van Gorcum, 1958Google Scholar
  85. 85.
    Zijlstra WG, Mook GA. Medical Reflection Photometry. Assen, The Netherlands: Van Gorcum, 1962:1–271Google Scholar
  86. 86.
    Brinkman R, Zijlstra WG, Koopmans RK. A method for continuous observation of percentage oxygen saturation in patients. Arch Chir Neerl 1950;1:333–344Google Scholar
  87. 87.
    Kramer K, ed. Oxymetrie. Theorie und klinische Anwendung. 1. Bremen Kolloquium. 26 Jan 1959. Stuttgart: Georg Thieme, 1960 (Ger)Google Scholar
  88. 88.
    Ware PF, Polanyi ML, Hehir RM, et al. A new reflection oximeter. J Thorac Cardiovasc Surg 1961;42:580–588PubMedGoogle Scholar
  89. 89.
    Kapani NS. Optical properties of certain dielectric cylinders. J Opt Soc Am 1957;47:413–422.CrossRefGoogle Scholar
  90. 90.
    Taylor JB, Lown B, Polanyi M. In-vivo monitoring with a fiberoptic catheter. JAMA 1972;221:667–673PubMedCrossRefGoogle Scholar
  91. 91.
    Johnson CC, Palm RD, Stewart DC, Martin WE. A solid state fiberoptics oximeter. J Assoc Adv Med Instrum 1971;5:77–83PubMedGoogle Scholar
  92. 92.
    Landsman MLJ, Knop N, Kwant G, et al. A fiberoptic reflection oximeter. Pflügers Arch 1978;373:273–282PubMedCrossRefGoogle Scholar
  93. 93.
    Cole J, Martin WE, Cheung PW, Johnson CC. Clinical studies with a solid state fiberoptic oximeter. Am J Cardiol 1972;29:383–388PubMedCrossRefGoogle Scholar
  94. 94.
    Divertie MB, McMichan JC. Continuous monitoring of mixed venous oxygen saturation. Chest 1984;85:423–428PubMedCrossRefGoogle Scholar
  95. 95.
    Martin WE, Cheung PW, Johnson CC, Wong KC. Continuous monitoring of mixed venous oxygen saturation in man. Anesth Analg Curr Res 1973;52:784–793Google Scholar
  96. 96.
    Wilkinson AR, Phibbs RH, Gregory GA. Continuous measurement of oxygen saturation in sick newborn infants. J Pediatr 1978;93:1016–1019PubMedCrossRefGoogle Scholar
  97. 97.
    Nakajima S, Hirai Y, Takase H, et al. Performances of new pulse wave earpiece oximctcr. Respir Circ 1975;23:41–45 Original: [New pulsed type earpiece oximeter]. Kokyu To Junkan 1975;23:709–713 (Jap)Google Scholar
  98. 98.
    Asari M, Kemmotsu O. [Application of the pulse wave ear oximeter in anesthesiology]. Jpn J Anesthesiol 1976;26:205–207 (Jap)Google Scholar
  99. 99.
    Suzukawa M, Fujisawa M, Matsushita F, et al. [Clinical use of pulse-type finger oximeter in anesthesia]. Jpn J Anesthesiol 1978;27:600–605 (Jap)Google Scholar
  100. 100.
    Yoshiya I, Shimada Y, Tanaka K. Spectrophotometric monitoring of arterial oxygen saturation in the fingertip. Med Biol Eng Comput 1980;18:27–32PubMedCrossRefGoogle Scholar
  101. 101.
    Sarnquist F, Todd C, Whitcher C. Accuracy of a new non-invasive oxygen saturation monitor. Anesthesiology 1980;53, S163CrossRefGoogle Scholar
  102. 102.
    Shimada Y, Yoshiya I, Oka N, Hamaguri K. Effects of multiple scattering and peripheral circulation on arterial oxygen saturation measured with a pulse-type oximeter. Med Biol Eng Comput 1984;22:475–478PubMedCrossRefGoogle Scholar
  103. 103.
    Mendelsohn Y, Cheung PW, Neuman MR, et al. Spectrophotometric investigation of pulsatile blood flow for transcutaneous reflectance oximetry. Adv Exp Med Biol 1981;159:93–102Google Scholar
  104. 104.
    Chapman KR, Liu FLW, Watson RM, Rebuck AS. Range of accuracy of two wavelength oximetry. Chest 1986;89:540–542PubMedCrossRefGoogle Scholar
  105. 105.
    Brodsky JB, Shulman MS, Swan M, Mark JB. Pulse oximetry during one-lung ventilation. Anesthesiology 1985;63:212–214PubMedCrossRefGoogle Scholar
  106. 106.
    Brooks TD, Paulus DA, Winkle WE. Infrared heat lamps interfere with pulse oximeters. Anesthesiology 1984;61:630. LetterPubMedCrossRefGoogle Scholar
  107. 107.
    Fanconi S, Dohcrty P, Edmonds JF, et al. Pulse oximetry in pediatric intensive care: comparison with measured saturations and transcutaneous oxygen tension. J Pediatr 1985;107:362–366PubMedCrossRefGoogle Scholar
  108. 108.
    Friesen RH. Pulse oximetry during pulmonary artery surgery. Anesth Analg 1985;64:376PubMedCrossRefGoogle Scholar
  109. 109.
    Krenkel R, Liappis N, Redel D, Hildenbrand G. Nichtinvasive Messung der Sauerstoffsattigung mit dem Oxygenmet-Oximeter. Vergleich mit der invasiven reflektometrischen Methode Klin Padiatr 1981;193:315–317 (Ger)Google Scholar
  110. 110.
    Liappis N. Nichtinvasive Messung der Sauerstoffsattigung mit dem Oxygenmet-Oximeter an Fingern, Mittelhand und Handgelenk von Sauglingen. Vergleich mit der berechneten Sauerstoffsattigung aus pH and PO2 der Blutgasanalyse. Klin Padiatr 1979;191:467–471 (Ger)PubMedGoogle Scholar
  111. 111.
    Mihm FG, Halperin BD. Noninvasive detection of profound arterial desaturations using a pulse oximetry device. Anesthesiology 1985;62:85–87PubMedCrossRefGoogle Scholar
  112. 112.
    Shippy MB, Petterson MT, Whitman RA, Shivers CR. A clinical evaluation of the BTI Biox II car oximeter. Respir Care 1984;29:730–735Google Scholar
  113. 113.
    Spiss CK, Mauritz W, Zadrobilek E, Draxler V. Nichtinvasive Pulsoximetrie zur Bestimmung der Sauerstoffsattigung bei Intensivpatienten. Anaesthesist 1985;34:405–408 (Ger)PubMedGoogle Scholar
  114. 114.
    Tyler IL, Tantisira B, Winter PM, Motoyama EK. Continuous monitoring of arterial oxygen saturation with pulse oximetry during transfer to the recovery room. Anesth Analg 1985;64:1108–1112PubMedCrossRefGoogle Scholar
  115. 115.
    Yelderman M, New W Jr. Evaluation of pulse oximetry. Anesthesiology 1983;59:349–352PubMedCrossRefGoogle Scholar
  116. 116.
    Kautsky H, Hirsch A. Nachweis geringster Sauerstoffmengen durch Phosphorescenztilgung. Z Anorg Allg Chem 1935;222:126–134 (Ger)CrossRefGoogle Scholar
  117. 117.
    Knopp JA, Longmuir IS. Intracellular measurement of oxygen by quenching of fluorescence of pyrenebutyric acid. Biochim Biophys Acta 1972;279:393PubMedGoogle Scholar
  118. 118.
    Lübbers D, Opitz N. The “PO2-optode,” a new tool to measure PO2 of biological gases and fluids by quantitative fluorescence photometry. Pflügers Arch 1975;359:R145Google Scholar
  119. 119.
    Lübbers D, Opitz N. Quantitative fluorescence photometry with biological fluids and gases. In: Thews G, Grote J, Reneau DD, eds. Oxygen transport to tissue. Advances in experimental medicine and biology. Vol 75, New York: Plenum, 1976:65–68Google Scholar
  120. 120.
    Lübbers DW, Opitz N. Die Pco2/Po2-Optode: Eine neue Pco2-bzw. Po2 Messonde zur Messung des Pco2 oder Po2 von Gasen und Flüssigkeiten. Z Naturforsch 1975;30c:532–533 (Ger)Google Scholar
  121. 121.
    Lübbers DW. Measuring methods for the analysis of tissue oxygen supply. In: Jöbsis FF. Oxygen and physiological function. Dallas: Professional Information Library, 1977:62–71Google Scholar
  122. 122.
    Lübbers DW, Opitz N. Optical fluorescence sensors for continuous measurement of chemical concentrations in biological systems. Sensors and Actuators 1983;4:641–654CrossRefGoogle Scholar

Copyright information

© Springer 1986

Authors and Affiliations

  • John W. Severinghaus
    • 1
  • Poul B. Astrup
    • 2
  1. 1.Department of Anesthesia and Anesthesia Research Center, Cardiovascular Research InstituteUniversity of California Medical CenterSan Francisco
  2. 2.Department of Clinical ChemistryRigshospital, University of CopenhagenCopenhagenDenmark

Personalised recommendations