Simultaneous estimates ofsynechococcus spp. Growth and grazing mortality rates in the English Channel

  • Ning Xiu-ren
  • Daniel Vaulot


The marine chroococooid phycoerythrin-containingSynechococcus spp. cyanobacterium has been implicated as a substantial component of the photosynthetic picoplankton in the ocean. Although its importance as food source for heterotrophic nanoplankton is now recognized, information about the cycling ofSynechococcus biomass and its diel pattern is limited and study methodology varies among authors. The selective metabolic inhibitor method was used to simultaneously estimate growth and grazing disappearance rates ofSynechococcus in the English Channel where growth rates ranged from 0.25 to 0.72/d (mean ±SD=0.51±0.17/d) and grazing mortality rates ranged from 0.19 to 0.64/d (mean ±SD=0.48±0.17/d). Size-fractionated experiments demonstrated that up to 70% ofSynechococcus disappearance could be attributed to grazers going through a 2 μm Nuclepore filter.Synechococcus grazing mortality rates (mean=0.74 ±0.25/d) during the day were always higher than that (mean=0.2±0.20/d) during the night, while growth rates showed no clear diel pattern. A positive correlation was observed between growth rates andin situ temperature ranging from 9 to 17°C, while in contrast grazing was independent of temperature. The close similatiry between average growth and grazing rates suggests a rapid recycling ofSynechococcus biomass in English Channel coastal waters.

Key words

photosynthetic picoplankton cyanobacteria Synechococcus spp. growth and grazing mortality English Channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azam, F., Fenchel, T., Field, J. G. et al., 1983. The ecological role of water column microbes in the sea.Mar. Ecol. Prog. Ser. 10: 257–263.CrossRefGoogle Scholar
  2. Bienfang, P. K., Takahashi, M., 1983. Ultraplankton growth rates in a subtropcial ecosystem.Mar. Biol. 76: 213–218.CrossRefGoogle Scholar
  3. Burkill, P. H., Mantoura, R. F. C., Llewellyn, C. A. et al., 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters.Mar. Biol. 93: 581–590.CrossRefGoogle Scholar
  4. Campbell, L., Carpenter, E. J., 1986a. Estimating the grazing pressure of heterotrophic nanoplankton onSynechococcus spp. using the sea water dilution and selective inhibitor techniques.Mar. Ecol. Prog. Ser. 33: 121–129.CrossRefGoogle Scholar
  5. Campbell, L., Carpenter, E. J., 1986b. Diel patterns of cell division in marineSynechococcus spp. (cyanobacteria): use of the frequency of dividing cells technique to measure growth rate.Mar. Ecol. Prog. Ser. 32: 139–148.CrossRefGoogle Scholar
  6. Carpenter, E. J., Campbell, L., 1988. Diel patterns of cell division and growth rates ofSynechococcus spp. in Long Island Sound.Mar. Ecol. Prog. Ser. 47: 179–183.CrossRefGoogle Scholar
  7. Chisholm, S. W., Armbrust, E. V., Olson, R. J., 1986. The individual cell in phytoplankton ecology: cell cycles and flow cytometry.In: Platt, T. and Li, W. K. W. (ed), Photosynthetic Picoplankton.Can. Bull. Fish. Aquat. Sci. 216: 343–369.Google Scholar
  8. Douglas, D. J., 1984. Microauroradiography-based enumeration of photosynthetic picoplankton with estimates of carbon-specific growth rates.Mar Ecol. Prog. Ser. 14: 223–228.CrossRefGoogle Scholar
  9. Estep, K. W., David, P. G., Keller, M. D. et al., 1986. How important are oceanic algal nanoflagellates in bacterivory?Limnol. Oceanogr. 31: 646–650.Google Scholar
  10. Fuhrman, J. A., McManus, G. B., 1984. Do bactena-sized marine eukaryotes consume significant bacterial production?Science 224: 1257–1260.CrossRefGoogle Scholar
  11. Glover, H. E., Campbell, I., Prezelin, B. B., 1986. Contribution ofSynechococcus spp. to size-fractionated primary productivity in three water masses in the Northwest Atlantic.Mar. Biol. 91: 193–203.CrossRefGoogle Scholar
  12. Harding, L. W., Meeson, B. W., Fisher, T. R., 1986. Phytoplankton production in two east coast estuaries: photosynthesis-light functions and patterns of carbon assimilation in Cheaspeake and Delaware Bays. Estuar.Coast Shelf Sci. 23: 773–806.CrossRefGoogle Scholar
  13. Harrison, W. G., Platt, T., 1980. Variations in assimilation number of coastal marine phytoplankton: Effects of environmental co-variates.J. Plank. Res. 4: 249–260.CrossRefGoogle Scholar
  14. Iturriaga, R., Mitchell, B. G., 1986. Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open ocean.Mar. Ecol. Prog. Ser. 28: 291–297.CrossRefGoogle Scholar
  15. Johnson, P. W., X. Huai-shui, Sieburth, J. M., 1982. The utilization of chroococcoid cyanobacteria by marine protozooplankton but not by calanoid copepods.Ann. Inst. Oceanogr. Paris 58(S): 297–308.Google Scholar
  16. Johnson, P. W., Sieburth, J. M., 1979. Chroococcoid cyanobacteria in the sea: ubiquitous and diverse phototrophic biomass.Limnol. Oceanogr. 24: 928–935.Google Scholar
  17. Joint, I. R., 1986. Physiological ecology of picoplankton in various provinces.In: Platt, T. and W. K. Li, (eds.) Photosynthetic Picoplankton.Can. Bull. Fish. Aquat. Sci. 214: 279–309.Google Scholar
  18. Landry, M. R., Hass, L. W., Fagemess, V. L., 1984. Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii.Mar. Ecol. Prog. Ser. 16: 127–133.CrossRefGoogle Scholar
  19. Landry, M. R., Hassett, R. P., 1982. Estimating the grazing impact of marine microzooplankton.Mar. Biol. 67: 283–288.CrossRefGoogle Scholar
  20. Li, W. K., Subba, R. D. V., Harrison, W. G., et al., 1983. Autotrophic picoplankton in the tropical ocean.Science 219: 292–295.CrossRefGoogle Scholar
  21. McDuff, R. E., Chisholm, S. W., 1982. The calculation ofin situ growth rates of phytoplankton populations from fractions of cell undergoing mitosis: a clarification.Limnol. Oceanogr. 27: 783–788.CrossRefGoogle Scholar
  22. Platt, T., Subba, R. D. V., Irwin, B., 1983. Photosynthesis of picoplankton in the oligotrophic ocean.Nature Lond. 301: 702–704.CrossRefGoogle Scholar
  23. Proctor, L M., Fuhman, J. A., 1990. Viral mortality of marine bacteria and cyanobacteria.Nature 343: 60–62.CrossRefGoogle Scholar
  24. Sherr, B. F., Sherr, E. B., Rassoulzadegan, F., 1988. Rates of digestion of bacteria by marine phagotrophic protozoa: temperature dependence.Appl. Environ. Microbiol. 54: 1091–1095.Google Scholar
  25. Sherr, B. F., Sherr, E. B., Andrew, T. L. et al., 1986. Trophic interations between heterotrophic protozoa and bacterioplankton in estuarine water analyzed with selective metabolic inhibitors.Mar. Ecol. Prog. Prog. Ser. 32: 169–180.CrossRefGoogle Scholar
  26. Sieburth, J. M., 1982. Status and perspectives of marine pelagic protozoology: A synthesis of the workshop at Villefranche-Sur-Mer, France, 1981.Ann. Inst. Oceanogr. Paris 58(S): 243–248.Google Scholar
  27. Simon, M., Azam, F., 1989. Protein content and protein synthesis rates of planktonic bacteria.Mar. Ecol. Prog. Ser. 51: 201–213.CrossRefGoogle Scholar
  28. Stoecker, D., Guillard, R. R. L., 1982. Effects of temperature and light on the feeding rate ofFavella sp. (ciliated protozoa, suborder tintinnida).Ann. Inst. Oceanogr. Paris,58(S): 309–318.Google Scholar
  29. Suharna, M., Hanson, E. D., 1971. The role of protein synthesis in prefission morphogenesis ofParamecium aurelia.J. Exp. Zool. 177: 463–468.CrossRefGoogle Scholar
  30. Taylor, G. T., Pace, M. L., 1987. Validity of eukaryote inhibitors for assessing production and grazing mortality of marine bacterioplankton.Appl. Environ. Microbiol 53: 119–128.Google Scholar
  31. Waterbury, J. B., Watson, S. W., Guillard, R. R. L. et al., 1979. Widespread occurence of a unicellular, marine planktonic cyanobacterium.Nature Lond. 227: 293–294.CrossRefGoogle Scholar
  32. Waterbury, J. B., Watson, F. W., Valois, F. W. et al., 1986. Biological and ecological characterization of the marine unicellular cyanobacteriumSynechococcus. In: Platt, T. and W. K. Li, (eds.) Photosynthetic Picoplankton,Can. Bull. Fish. Aquat. Sci. 214: 71–120.Google Scholar
  33. Williams, P. J. leB., Heinemann, K. R., Marra J. et al., 1983. Comparison of14C and O2 measurements of phytoplankton production in oligotrophic waters.Nature Lond. 305: 49–50.CrossRefGoogle Scholar
  34. Wikner, J., Rassoulzadegan, F., Hagströn, A., 1990. Periodic bacterivore activity balances bacterial growth in the marine environment.Limnol. Oceanogr. 35: 313–324.Google Scholar

Copyright information

© Science Press 1996

Authors and Affiliations

  • Ning Xiu-ren
    • 1
  • Daniel Vaulot
    • 2
  1. 1.Second Institute of OceanographySOAHangzhou
  2. 2.Station Biologique de RoscoffCNRSRoscoffFrance

Personalised recommendations