Advertisement

Advances in Therapy

, Volume 23, Issue 6, pp 957–973 | Cite as

Endometrial apoptosis induced by a 900-MHz mobile phone: Preventive effects of vitamins E and C

  • Baha Oral
  • Mehmet Guney
  • Fehmi Ozguner
  • Nermin Karahan
  • Tamer Mungan
  • Selcuk Comlekci
  • Gokhan Cesur
Article

Abstract

Numerous reports have described the effects induced by an electromagnetic field (EMF) in various cellular systems. The purposes of this study were to examine oxidative stress that promotes production of reactive oxygen species induced by a 900-megahertz (MHz) mobile phone and the possible ameliorating effects of vitamins E and C on endometrial tissue against EMF-induced endometrial impairment and apoptosis in rats. Animals were randomly grouped as follows: (1) sham-operated control group (n=8), (2) 900 MHz EMF-exposed group (n=8; 30 min/d for 30 d), and (3) 900 MHz EMF-exposed group, treated with vitamins E and C (n=8; 50 mg/kg intramuscularly and 20 mg/kg body weight intraperitoneally before daily EMF exposure). Malondialdehyde (an index of lipid peroxidation) was used as a marker of oxidative stress-induced endometrial impairment; Bcl-2, Bax, caspase-3, and caspase-8 were assessed immunohistochemically. In this study, increased malondialdehyde levels in endometrial tissue and apoptosis illustrated the role of the oxidative mechanism induced by exposure to a 900-MHz mobile phone-like device and vitamins E and C; via free radical scavenging and antioxidant properties, oxidative tissue injury and apoptosis were ameliorated in rat endometrium. In conclusion, exposure to 900-MHz radiation emitted by mobile phones may cause endometrial apoptosis and oxidative stress, but treatment with vitamins E and C can diminish these changes and may have a beneficial effect in preventing endometrial changes in rats.

Keywords

apoptosis endometrium mobile phone oxidative stress vitamin C vitamin E 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Selmaoui B, Lambrozo J, Touitou Y. Endocrine functions in young men exposed for one night to a 50-Hz magnetic field: a circadian study of pituitary, thyroid and adrenocortical hormones.Life Sci. 1997; 61: 473–486.PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Akhras MA, Elbetieha A, Hasan MK, Al-Omari I, Darmani H, Albiss B. Effects of extremely low-frequency magnetic field on fertility of adult male and female rats.Bioelectromagnetics. 2001; 22: 340–344.PubMedCrossRefGoogle Scholar
  3. 3.
    Infante-Rivard C. Electromagnetic field exposure during pregnancy and childhood leukaemia.Lancet. 1995; 346: 177.PubMedCrossRefGoogle Scholar
  4. 4.
    Juutilainen J, Huuskonen H, Komulainen H. Increased resorptions in CBA mice exposed to low-frequency magnetic fields: an attempt to replicate earlier observations.Bioelectromagnetics. 1997; 18: 410–417.PubMedCrossRefGoogle Scholar
  5. 5.
    Wiley MJ, Corey P, Kavet R, et al. The effects of continuous exposure to 20 KHz sawtooth magnetic fields on the litters of CD-1 mice.Teratology. 1992; 46: 391–398.PubMedCrossRefGoogle Scholar
  6. 6.
    Kowalczuk CI, Robbins L, Thomas JM, Butland BK, Saunders RD. Effects of prenatal exposure to 50 Hz magnetic fields on development in mice. I. Implantation rate and fetal development.Bioelectromagnetics. 1994; 15: 349–361.PubMedCrossRefGoogle Scholar
  7. 7.
    Svedenstal BM, Johnson KJ. Fetal loss in mice exposed to magnetic fields during early pregnancy.Bioelectromagnetics. 1995; 16: 284–289.PubMedCrossRefGoogle Scholar
  8. 8.
    Lantow M, Schdurer J, Hartwig C, Simko M. Free radical release and HSP70 expression in two human immune-relevant cell lines after exposure to 1800 MHz radiofrequency radiation.Radiat Res. 2006; 165: 88–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Palumbo R, Capaso D, Brescia F, et al. Effects on apoptosis and reactive oxygen species formation by Jurkat cells exposed to 50 Hz electromagnetic fields.Bioelectromagnetics. 2006; 27: 159–162.PubMedCrossRefGoogle Scholar
  10. 10.
    Zmyslony M, Politanski P, Rajkowska E, Szymczak W, Jajte J. Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions.Bioelectromagnetics. 2004; 25: 324–328.PubMedCrossRefGoogle Scholar
  11. 11.
    Harakawa S, Inoue N, Hori T, et al. Effects of a 50 Hz electric field on plasma lipid peroxide level and antioxidant activity in rats.Bioelectromagnetics. 2005; 26: 589–594.PubMedCrossRefGoogle Scholar
  12. 12.
    Bediz CS, Baltaci AK, Mogulkoc R, Öztekin E. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain.Tohoku J Exp Med. 2006; 208: 133–140.PubMedCrossRefGoogle Scholar
  13. 13.
    Santini MT, Ferrante A, Rainaldi G, Indovina P, Indovina PL. Extremely low frequency (EFL) magnetic fields and apoptosis: a review.Int J Radiat Biol. 2005; 81: 1–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Llopis SP, Ferrando MD, Pena JB. Fish tolerance to organophosphate-induced oxidative stress is dependent on the glutathione metabolism and enhanced by N-acetylcysteine.Aquat Toxicol. 2003; 65: 337–360.Google Scholar
  15. 15.
    Vaskivuo TE, Stenback F, Karhumaa P, Risteli J, Dunkel L, Tapanainen JS. Apoptosis and apoptosis-related proteins in human endometrium.Mol Cell Endocrinol. 2000; 165: 75–83.PubMedCrossRefGoogle Scholar
  16. 16.
    McGowan AJ, Fernandes RS, Samali A, Cotter TG. Anti-oxidants and apoptosis.Biochem Soc Trans. 1996; 24: 229–234.PubMedGoogle Scholar
  17. 17.
    Serbecic N, Beutelspacher SC. Anti-oxidative vitamins prevent lipid-peroxidation and apoptosis in corneal endothelial cells.Cell Tissue Res. 2005; 320: 465–475.PubMedCrossRefGoogle Scholar
  18. 18.
    Ramanathan K, Anusuyadevi M, Shila S, Panneerselvan C. Ascorbic acid and alfa-tocopherol as potent modulators of apoptosis on arsenic induced toxicity in rats.Toxicol Lett. 2005; 156: 297–306.PubMedCrossRefGoogle Scholar
  19. 19.
    Ayata A, Mollaoglu H, Yilmaz HR, Akturk O, Ozguner F, Altuntas I. Oxidative stress-mediated skin damage in an experimental mobile phone model can be prevented by melatonin.J Dermatol. 2004; 31: 878–883.PubMedGoogle Scholar
  20. 20.
    Ozguner F, Oktem F, Armagan A, et al. Comparative analysis of the protective effects of melatonin and caffeic acid phenethyl ester (CAPE) on mobile phone-induced renal impairment in rat.Mol Cell Biochem. 2005; 276: 31–37.PubMedCrossRefGoogle Scholar
  21. 21.
    Ozguner F, Bardak Y, Comlekci S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone: a comparative study.Mol Cell Biochem. 2006; 282: 83–88.PubMedCrossRefGoogle Scholar
  22. 22.
    Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E. Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin.Arch Med Res. 2005; 36: 350–355.PubMedCrossRefGoogle Scholar
  23. 23.
    Ozguner F, Altinbas A, Ozaydin M, et al. Mobile phone-induced myocardial oxidative stress: protection by a novel antioxidant agent caffeic acid phenethyl ester.Toxicol Ind Health. 2004; 20: 133–139.PubMedCrossRefGoogle Scholar
  24. 24.
    Altuntas I, Delibas N, Sutcu R. The effects of organophosphate insecticide methidathion on lipid peroxidation and anti-oxidant enzymes in rat erythrocytes: role of vitamins E and C.Hum Exp Toxicol. 2002; 21: 681–685.PubMedCrossRefGoogle Scholar
  25. 25.
    Gultekin F, Delibas N, Yasar S, Kilinc I. In vivo changes in antioxidant systems and protective role of melatonin and a combination of vitamin C and vitamin E on oxidative damage in erythrocytes induced by chlorpyrifos-ethyl in rats.Arch Toxicol. 2001; 75: 88–96.PubMedCrossRefGoogle Scholar
  26. 26.
    Appenroth D, Fröb S, Kertsen L, Splinter K, Winnefeld K. Protective effect of vitamins E and C on cisplatin nephrotoxicity in developing rats.Arch Toxicol. 1997; 71: 677–683.PubMedCrossRefGoogle Scholar
  27. 27.
    Yavuz T, Altuntas I, Delibas N, et al. Cardiotoxicity in rats induced by methidathion and ameliorating effect of vitamins E and C.Hum Exp Toxicol. 2004; 23: 323–329.PubMedCrossRefGoogle Scholar
  28. 28.
    Zarrow MX, Yochia JM, McCarthy JJ. Experimental Endocrinology: A Source Book of Basic Techniques. New York: Academic Press; 1964: 36–39.Google Scholar
  29. 29.
    Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation.Methods Enzymol. 1990; 186: 421–431.PubMedCrossRefGoogle Scholar
  30. 30.
    Yariktas M, Doner F, Ozguner F, Gokalp O, Dogru H, Delibas N. Nitric oxide level in the nasal and sinus mucosa after exposure to electromagnetic field.Otolaryngol Head Neck Surg. 2005; 132: 713–716.PubMedCrossRefGoogle Scholar
  31. 31.
    Baker HWG, Brindl J, Irvine DS, Aitken RJ. Protective effect of antioxidants on the impairment of sperm motility by activated polymorphonuclear leukocytes.Fertil Steril. 1996; 65: 411–419.PubMedGoogle Scholar
  32. 32.
    Harapanhalli RS, Yaghmai V, Giuliani D, Howell RW, Rao DV. Antioxidant effects of vitamin C in mice following X-irradiation.Res Commun Mol Pathol Pharmacol. 1996; 94: 271–287.PubMedGoogle Scholar
  33. 33.
    Stoyanovsky D, Goldman R, Darrow R, Organisciak D, Kagan V. Endogenous ascorbate regenerates vitamin E in the retina directly and in combination with dihydrolipoic acid.Curr Eye Res. 1995; 14: 181–189.PubMedCrossRefGoogle Scholar
  34. 34.
    Henmi H, Endo T, Kitajima Y, Manase K, Hata H, Kuto R. Effects of ascorbic acid supplementation on serum progesterone levels in patients with a luteal phase defect.Fertil Steril. 2003; 80: 459–461.PubMedCrossRefGoogle Scholar
  35. 35.
    Crha I, Hruba D, Ventruba P, Fiala J, Totusek J, Visnova H. Ascorbic acid and infertility treatment.Cent Eur J Public Health. 2003; 11: 63–67.PubMedGoogle Scholar
  36. 36.
    Ledee-Bataille N, Olivennes F, Lefaix JL, Chaouat G, Frydman R, Delanian S. Combined treatment by pentoxifylline and tocopherol for recipient women with a thin endometrium enrolled in an oocyte donation programme.Hum Reprod. 2002; 17: 1249–1253.PubMedCrossRefGoogle Scholar
  37. 37.
    Siu AW, Reiter RJ, To CH. The efficacy of vitamin E and melatonin as an oxidant against lipid peroxidation in rat retinal homogenates.J Pineal Res. 1998; 24: 229–244.CrossRefGoogle Scholar
  38. 38.
    Siu AW, Reiter RJ, To CH. Pineal indolamines and vitamin E reduce nitric oxide-induced lipid peroxidation in rat retinal homogenates.J Pineal Res. 1999; 27: 122–128.PubMedCrossRefGoogle Scholar
  39. 39.
    Marinelli F, La Sala D, Cicciotti G, et al. Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells.J Cell Physiol. 2004; 198: 324–332.PubMedCrossRefGoogle Scholar
  40. 40.
    Pirozzoli MC, Marino C, Lovisolo GA, Laconi C, Mosiello L, Negroni A. Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line.Bioelectromagnetics. 2003; 24: 510–516.PubMedCrossRefGoogle Scholar
  41. 41.
    Lai H, Singh NP. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation.Int J Radiat Biol. 1996; 9: 513–521.CrossRefGoogle Scholar
  42. 42.
    Maes A, Collier M, Slaets D, Verschaeve L. Cytogenetic effects of microwaves from mobile communication frequencies (954 MHz).ElectroMagnetobiology. 1995; 14: 91–98.Google Scholar
  43. 43.
    Merola P, Marino C, Lovisolo GA, Pinto R, Laconi C, Negroni A. Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field.Bioelectromagnetics. 2006; 27: 164–171.PubMedCrossRefGoogle Scholar
  44. 44.
    Tarantino P, Lanubile R, Lacalandra G, Abbro L, Dini L. Post-continuous whole body exposure of rabbits to 650 MHz electromagnetic fields: effects on liver, spleen, and brain.Radiat Environ Biophys. 2005; 44: 51–59.PubMedCrossRefGoogle Scholar
  45. 45.
    Capri M, Scarcella E, Fumelli C, et al. In vitro exposure of human lymphocytes to 900 MHz CW and GSM modulated radiofrequency: studies of proliferation, apoptosis and mitochondrial membrane potential.Radiat Res. 2004; 162: 211–218.PubMedCrossRefGoogle Scholar
  46. 46.
    Capri M, Scarcella E, Bianchi E, et al. 1800. MHz radiofrequency (mobile phones, different Global System for Mobile communication modulations) does not affect apoptosis and heat shock protein 70 level in peripheral blood mononuclear cells from young and old donors.Int J Radiat Biol. 2004; 80: 389–397.PubMedCrossRefGoogle Scholar
  47. 47.
    Pirozzoli MC, Marino C, Lovisolo GA, Laconi C, Mosiello L, Negroni A. Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line.Bioelectromagnetics. 2003; 24: 510–516.PubMedCrossRefGoogle Scholar
  48. 48.
    Akcali KC, Khan SA, Moulton BC. Effect of decidualization on the expression of Bax and Bcl-2 in the rat uterine endometrium.Endocrinology. 1996; 137: 3123–3131.PubMedCrossRefGoogle Scholar

Copyright information

© Health Communications Inc 2006

Authors and Affiliations

  • Baha Oral
    • 1
  • Mehmet Guney
    • 1
  • Fehmi Ozguner
    • 2
  • Nermin Karahan
    • 3
  • Tamer Mungan
    • 4
  • Selcuk Comlekci
    • 5
  • Gokhan Cesur
    • 2
  1. 1.Department of Obstetrics and GynecologySuleyman Demirel UniversityIspartaTurkey
  2. 2.Department of Physiology Faculty of MedicineSuleyman Demirel UniversityIspartaTurkey
  3. 3.Department of Pathology Faculty of MedicineSuleyman Demirel UniversityIspartaTurkey
  4. 4.Department of Obstetrics and GynecologyFaculty of MedicineIspartaTurkey
  5. 5.Department of Electronics and CommunicationFaculty of EngineeringIspartaTurkey

Personalised recommendations