Advertisement

Pramana

, Volume 25, Issue 6, pp 635–640 | Cite as

Gauging the conformal group

  • E A Lord
  • P Goswami
Mathematical Physics

Abstract

It is demonstrated that Kibble’s method of gauging the Poincaré group can be applied to the gauging of the conformal group. The action of the gauge transformations is the action of general spacetime diffeomorphisms (or coordinate transformations) combined with a local action of an 11-parameter subgroup of SO(4,2). Because the translational subgroup is not an invariant subgroup of the conformal group the appropriate generalisation of the derivative of a physical field is not a covariant derivative in the usual sense, but this does not lead to any inconsistencies.

Keywords

Conformal group gauge theories 

PACS No

11.15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harnad J P and Pettitt R B 1976J. Math. Phys. 17 1827CrossRefADSMathSciNetGoogle Scholar
  2. Harnad J P and Pettitt R B 1977 inGroup theoretical methods in physics, Proc. V. Intl. Colloquium (eds) R T Sharp and B Kolman (New York: Academic Press)Google Scholar
  3. Hehl F W 1980 in6th Course of the Int. School of Cosmology and Gravitation on spin, torsion, rotation and supergravity (eds) P G Bergmann and V Sabbatta (New York: Plenum Press)Google Scholar
  4. Hehl F W, Lord E A and Ne’eman Y 1977Phys. Lett. B71 432ADSGoogle Scholar
  5. Hehl F W, Lord E A and Ne’eman Y 1978Phys. Rev. D17 428ADSMathSciNetGoogle Scholar
  6. Hehl F W, Nitsch J and Von der Heyde P 1980 ingeneral relativity and gravitation, one hundred years after the birth of Albert Einstein (ed.) A Held (New York: Plenum Press) Vol 1Google Scholar
  7. Kibble T W B 1961J. Math. Phys. 2 212zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. Lord E A 1978Phys. Lett. A65 1ADSGoogle Scholar
  9. Mack G and Salam A 1969Ann. Phys. 53 174CrossRefADSMathSciNetGoogle Scholar
  10. Mukunda N 1982 inProceedings of the Workshop on Gravitation and Relativistic Astrophysics, Ahmedabad India (eds) A Prasanna, J V Narlikar and C V Vishveshwara (Bangalore: Indian Acad. Sci.)Google Scholar
  11. von der Heyde P 1976Z. Naturforschung A31 1725Google Scholar
  12. Yang C N and Mills H 1954Phys. Rev. 96 191CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 1985

Authors and Affiliations

  • E A Lord
    • 1
  • P Goswami
    • 2
  1. 1.Department of Applied MathematicsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations