, Volume 25, Issue 5, pp 587–596 | Cite as

Theoretical optimization of metalp–n silicon Schottky barrier solar cell

  • C Francis Xavier
  • G A Sevariraj
  • Vikram Kumar
Solid State Physics


The theoretical optimization of the design parametersN A ,N D andW P has been done for efficient operation of Au-p-n Si solar cell including thermionic field emission, dependence of lifetime and mobility on impurity concentrations, dependence of absorption coefficient on wavelength, variation of barrier height and hence the optimum thickness ofp region with illumination. The optimized design parametersN D =5×1020 m−3,N A =3×1024 m−3 andW P =11.8 nm yield efficiencyη=17.1% (AM0) andη=19.6% (AM1). These are reduced to 14.9% and 17.1% respectively if the metal layer series resistance and transmittance with ZnS antireflection coating are included. A practical value ofW P =97.0 nm gives an efficiency of 12.2% (AM1).


Optimization silicon metalp-n structure solar cell 


85.30 85.60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baccarani G and Ostoja P 1975Solid State Electron. 18 579CrossRefADSGoogle Scholar
  2. Caughey C M and Thomas R F 1967Proc. IEEE. 55 2192CrossRefGoogle Scholar
  3. Crook D L and Yeargan J R 1977IEEE Trans. Electron Devices,ED24 330CrossRefADSGoogle Scholar
  4. Fossum J G 1976Solid State Electron 18 309Google Scholar
  5. Handy R J 1967Solid State Electron 10 765CrossRefADSGoogle Scholar
  6. Heavens O S 1955Optical properties of thin solid films (London: Butterworths) 69Google Scholar
  7. Hovel H J 1975Semiconductors and semimetals, Solar cells (eds) R K Willardson and A C Beer (New York: Academic Press) Vol. 11Google Scholar
  8. Irvin J C 1962Bell System Tech. J. 41 387Google Scholar
  9. Kadereit H G 1967Thin Solid Films 1 109CrossRefADSGoogle Scholar
  10. Kendall D 1969 Conf. Physics and Applications of Lithium Diffused Silicon, NASA-Goddard Space Flight Centre, USAGoogle Scholar
  11. Krishna Murthy G S R and Sinha A P B 1979Pramana (J. Phys.) 13 39ADSGoogle Scholar
  12. Kuester J L and Mize J H 1975Optimization techniques with Fortran (New York: McGraw Hill) p. 368Google Scholar
  13. Kumar V and Dahlke W E 1977Solid State Electron. 20 143CrossRefADSGoogle Scholar
  14. Li S S 1978Solid State Electron 21 435CrossRefADSGoogle Scholar
  15. Mott N F 1962Elements of wave mechanics (Cambridge: University Press)Google Scholar
  16. Mousty F, Ostoja P and Passan L 1974J. Appl. Phys. 45 576CrossRefGoogle Scholar
  17. Phillips W E 1972Solid State Electron 15 1097CrossRefADSGoogle Scholar
  18. Pulfrey D L and McQuat R F 1974Appl. Phys. Lett. 24 167CrossRefADSGoogle Scholar
  19. Roy S B, Sinha T K and Daw A N 1983Solid State Electron. 26 353CrossRefADSGoogle Scholar
  20. Runyan W R 1967 NASA Report CR 93154Google Scholar
  21. Shannon J M 1976Solid State Electron. 19 537CrossRefADSGoogle Scholar
  22. Sze S M 1981Physics of semiconductor devices (New York: John Wiley)Google Scholar
  23. Thekaekara M P 1976Solar Energy 18 309CrossRefADSGoogle Scholar
  24. Van der Ziel A 1977Solid State Electron. 20 269CrossRefADSGoogle Scholar
  25. Wu C Y 1981Solid State Electron. 24 857CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1985

Authors and Affiliations

  • C Francis Xavier
    • 1
  • G A Sevariraj
    • 1
  • Vikram Kumar
    • 1
    • 2
  1. 1.Department of PhysicsSt. Joseph’s CollegeTiruchirapalliIndia
  2. 2.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations