Advertisement

Pramana

, Volume 21, Issue 6, pp 357–367 | Cite as

Lattice sum of electric field gradients in tetragonal crystals

  • D P Verma
  • A Yadav
  • H C Verma
Solid State Physics

Abstract

A new method to calculate the lattice contribution to electric field gradients at a nuclear site in tetragonal crystals is developed. The crystal is regarded as an assembly of positive ions at lattice points embedded in a uniform background of negative charge (point charge model). The method uses Euler-Maclaurin formula and makes the plane-wise summation in the direct crystal space unlike most of the previous methods utilising Fourier transform to reciprocal space. The numerical values obtained using the above approach agree well with previous results.

Keywords

Electric field gradient lattice sum convergence tetragonal crystals Euler-Maclaurin formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christiansen J, Heubes P, Keitel R, Klinger W, Loeffler W, Sandner W and Witthuhn W 1976Z. Phys. B24 177ADSGoogle Scholar
  2. Das T P and Pomerantz M 1961Phys. Rev. 123 2070CrossRefADSGoogle Scholar
  3. de Wette F W 1961Phys. Rev. 123 103zbMATHCrossRefADSGoogle Scholar
  4. de Wette F W and Schacher G E 1965Phys. Rev. 137 A78 and A92Google Scholar
  5. Dickmann D B and Schacher G E 1967J. Comput. Phys. 2 87CrossRefADSGoogle Scholar
  6. Ewald P P 1921Ann. Phys. (Leipz). 64 253CrossRefADSGoogle Scholar
  7. Hildebrand F B 1956Introduction to numerical analysis (New Delhi: Tata McGraw-Hill) p. 152zbMATHGoogle Scholar
  8. Kaufman E N and Vianden R J 1979Rev. Mod. Phys. 51 161CrossRefADSGoogle Scholar
  9. Nijboer B R A and de Wette F W 1957Physica 23 309zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. Nijboer B R A and de Wette F W 1958Physica 24 422zbMATHCrossRefADSGoogle Scholar
  11. Raghavan P, Kaufman E N, Raghavan R S, Ansaldo E J and Naumahn R A 1976Phys. Rev. B13 2835ADSGoogle Scholar
  12. Simmons W W and Slichter C P 1961Phys. Rev. 121 1580CrossRefADSGoogle Scholar
  13. Sternheimer R M 1954Phys. Rev. 95 736CrossRefADSGoogle Scholar
  14. Sternheimer R M 1954aPhys. Rev. 96 951zbMATHCrossRefADSGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1983

Authors and Affiliations

  • D P Verma
    • 1
    • 2
  • A Yadav
    • 1
  • H C Verma
    • 1
  1. 1.Department of PhysicsScience CollegePatnaIndia
  2. 2.Department of MathematicsScience CollegePatnaIndia

Personalised recommendations