, Volume 20, Issue 2, pp 105–124 | Cite as

Generalized pencils of rays in statistical wave optics



The recently introduced generalized pencil of Sudarshan which gives an exact ray picture of wave optics is analysed in some situations of interest to wave optics. A relationship between ray dispersion and statistical inhomogeneity of the field is obtained. A paraxial approximation which preserves the rectilinear propagation character of the generalized pencils is presented. Under this approximation the pencils can be computed directly from the field conditions on a plane, without the necessity to compute the cross-spectral density function in the entire space as an intermediate quantity. The paraxial results are illustrated with examples. The pencils are shown to exhibit an interesting scaling behaviour in the far-zone. This scaling leads to a natural generalization of the Fraunhofer range criterion and of the classical van Cittert-Zernike theorem to planar sources of arbitrary state of coherence. The recently derived results of radiometry with partially coherent sources are shown to be simple consequences of this scaling.


Generalized pencils paraxial approximation partial coherence radiometry diffraction interference wave optics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baltes H P, Geist J and Walther A 1978 inInverse source problems in optics (ed.) H P Baltes (Berlin: Springer-Verlag) Ch. 5Google Scholar
  2. Bastiaans M J 1978Opt. Commun. 25 26CrossRefADSGoogle Scholar
  3. Bastiaans M J 1979J. Opt. Soc. Am. 69 1710ADSGoogle Scholar
  4. Beran M J and Parrent G B 1964Theory of partial coherence (New Jersey: Prentice Hall).Google Scholar
  5. Born M and Wolf E 1970Principles of optics, 4th ed. (London: Pergamon Press) Ch. 10Google Scholar
  6. Carter W H and Wolf E 1977J. Opt. Soc. Am. 67 785ADSGoogle Scholar
  7. Chandrasekhar S 1950Radiative transfer (New York: Dover)zbMATHGoogle Scholar
  8. Collett E, Foley J T and Wolf E 1977J. Opt. Soc. Am. 67 465ADSMathSciNetGoogle Scholar
  9. Collett E and Wolf E 1979J. Opt. Soc. Am. 69 942ADSGoogle Scholar
  10. Collett E and Wolf E 1980Opt. Commun. 32 27CrossRefADSGoogle Scholar
  11. Fante R L 1981J. Opt. Soc. Am. 71 460ADSMathSciNetGoogle Scholar
  12. Klauder J R and Sudarshan E C G 1968Fundamentals of quantum optics (New York: W.A. Benjamin), Ch. 1Google Scholar
  13. Leader J C 1978J. Opt. Soc. Am. 68 1332ADSCrossRefGoogle Scholar
  14. Schell A C 1961The Multiple plate antennas, Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  15. Sudarshan E C G 1969J. Math. Phys. Sci. 3 121MathSciNetGoogle Scholar
  16. Sudarshan E C G 1979aPhys. Lett. 73A 269ADSMathSciNetGoogle Scholar
  17. Sudarshan E C G 1979bPhysica 96A 315ADSGoogle Scholar
  18. Sudarshan E C G 1980 ICO-Conference,Optics in four dimensions, Enseneda, Mexico.Google Scholar
  19. Sudarshan E C G 1981Phys. Rev. A23 2802ADSMathSciNetGoogle Scholar
  20. van Cittert P H 1934Physica 1 201zbMATHCrossRefADSGoogle Scholar
  21. Walther A 1968J. Opt. Soc. Am. 58 1256ADSGoogle Scholar
  22. Wolf E 1976Phys. Rev. D13 869ADSGoogle Scholar
  23. Wolf E 1978J. Opt. Soc. Am. 68 6ADSGoogle Scholar
  24. Wolf E and Carter W H 1976Opt. Commun. 16 297CrossRefADSGoogle Scholar
  25. Zernike F 1938Physica 5 785CrossRefADSGoogle Scholar
  26. Zubairy M S 1981Opt. Commun. 37 315CrossRefADSGoogle Scholar
  27. Zubairy M S and Wolf E 1977Opt. Commun. 20 321CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1983

Authors and Affiliations

  • R Simon
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangalore

Personalised recommendations