Advertisement

Continuous Markov processes and stochastic equations

  • Gisiro Maruyama
Article

Keywords

Brownian Motion Markov Process Lipschitz Condition Invariance Principle Stochastic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. BernsteinÉquations différentielles stochastiques, Actualités Scientifiques et Industrielles, n. 738, Herman, Paris, 1938, pp. 5–32.Google Scholar
  2. 2.
    M. D. Donsker,An invariance principle for certain probability limit theorems, Memoirs of the American Mathematical Society, Vol. 5 (1951), pp. 43–55.MathSciNetGoogle Scholar
  3. 3.
    J. L. Doob,Heuristic approach to the Kolmogorov-Smirnov theorems, Annals of Mathematical Statistics, Vol. 20 (1949), pp. 394–403.CrossRefMathSciNetGoogle Scholar
  4. 4.
    J. L. Doob,Stochastic processes, Wiley, New York, 1953.MATHGoogle Scholar
  5. 5.
    P. Erdös and M. Kac,On certain limit theorems of the theory of probability, Bulletin of the American Mathematical Society, Vol. 52 (1946), pp. 292–302.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    W. Feller,Zur Theorie der stochastischen Prozesse, Mathematische Annalen, Vol. 113. (1936), pp. 113–160.CrossRefMathSciNetGoogle Scholar
  7. 7.
    W. Feller,On the integrodifferential equations of purely discontinuous Markoff processes, Transactions of the American Mathematical Society, Vol. 48 (1940), pp. 488–515.CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    R. Fortet,Les fonctions aléatoires du type de Markoff associées à certaines équations linéaires aux derivées partielles du type parabolique, Journal de Mathematiques pures et appliquées, Vol. 22 (1943), pp. 177–243.MathSciNetMATHGoogle Scholar
  9. 9.
    K. Ito,Stochastic integral, Proceedings of the Imperial Academy, Tokyo, Vol. 20 (1944), pp. 519–524.MATHGoogle Scholar
  10. 10.
    K. Ito,On a stochastic integral equation, Proceedings of Japan Academy, Vol. 22 (1946) pp. 32–35.MATHCrossRefGoogle Scholar
  11. 11.
    K. Ito,On stochastic differential equations, Memoirs of the American Mathematical Society, Vol. 4 (1951), 51 pp.Google Scholar
  12. 12.
    M. Kac,On some connections between probability theory and differential and integral equations, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, 1951, pp. 189–215.Google Scholar
  13. 13.
    A. Khintchine,Asymptotische Gesetze der Wahrscheinlichkeitsrechnung, Springer, Berlin, 1933.Google Scholar
  14. 14.
    A. Kolmogoroff,Ueber die analytischen Methoden der Wahrscheinlichkeitsrechnung, Mathematische Annalen, Vol. 104 (1931), pp. 415–458.CrossRefMathSciNetGoogle Scholar
  15. 15.
    G. Maruyama,Markov proceesses and stochastic equations, Natural Science Report, Ochanomizu University, Vol. 4 (1953), pp. 40–43.MathSciNetMATHGoogle Scholar
  16. 16.
    M. Udagawa,Asymptotic properties of distributions of some functionals of random variables, Reports of Statistical Application Research, Union of Japanese Scientists and Engineers, Vol. 2 (1952), pp. 1–66.MathSciNetGoogle Scholar

Copyright information

© Springer 1955

Authors and Affiliations

  • Gisiro Maruyama
    • 1
  1. 1.Tokio

Personalised recommendations