Pramana

, Volume 49, Issue 2, pp 205–212

A new class of cosmological models in Lyra geometry

  • G P Singh
  • Kalyani Desikan
Research Articles

Abstract

FRW models have been studied in the cosmological theory based on Lyra’s geometry. A new class of exact solutions has been obtained by considering a time dependent displacement field for constant deceleration parameter models of the universe.

Keywords

Cosmology Lyra geometry FRW models 

PACS No.

98.80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H Weyl,Sber Preuss. Akad. Wiss. 465 (1918)Google Scholar
  2. [2]
    G Lyra,Math. Z. 54, 52 (1951)MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    D K Sen,Z. Phys. 149, 311 (1957)MATHCrossRefADSGoogle Scholar
  4. [4]
    D K Sen and K A Dunn,J. Math. Phys. 12, 578 (1971)MATHCrossRefADSMathSciNetGoogle Scholar
  5. [5]
    W D Halford,Austr. J. Phys. 23, 863 (1970)ADSGoogle Scholar
  6. [6]
    W D Halford,J. Math. Phys. 13, 1399 (1972)CrossRefGoogle Scholar
  7. [7]
    K S Bhamra,Austr. J. Phys. 27, 541 (1974)ADSGoogle Scholar
  8. [8]
    T M Karade and S M Borikar,Gen. Relativ. Gravit.,9, 431 (1978)CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    S B Kalyanshetti and B B Waghmode,Gen. Relativ. Gravit. 14, 823 (1982)MATHCrossRefADSMathSciNetGoogle Scholar
  10. [10]
    D R K Reddy and P Innaiah,Astrophys. Space Sci. 123, 49 (1986)MATHCrossRefADSMathSciNetGoogle Scholar
  11. [11]
    A Beesham,Astrophys. Space Sci. 127, 189 (1986)CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    D R K Reddy and R Venkateswarlu,Astrophys. Space Sci. 136, 191 (1987)CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    H H Soleng,Gen. Relativ. Gravit. 19, 1213 (1987)CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A Beesham,Austr. J. Phys. 41, 833 (1988)ADSMathSciNetGoogle Scholar
  15. [15]
    T Singh and G P Singh,J. Math. Phys. 32, 2456 (1991a)MATHCrossRefADSMathSciNetGoogle Scholar
  16. [16]
    T Singh and G P Singh,Il. Nuovo Cimento B106, 617 (1991b)ADSGoogle Scholar
  17. [17]
    T Singh and G P Singh,Int. J. Theor. Phys. 31, 1433 (1992)CrossRefGoogle Scholar
  18. [18]
    T Singh and G P Singh,Fortschr. Phys. 41, 737 (1993)MathSciNetGoogle Scholar
  19. [19]
    A Beesham,Phys. Rev. D48, 3539 (1993)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1997

Authors and Affiliations

  • G P Singh
    • 1
  • Kalyani Desikan
    • 1
    • 3
  1. 1.Cosmology Group, Department of MathematicsIndian Institute of TechnologyChennaiIndia
  2. 2.Department of MathematicsVishveshwara Regional Engg. CollegeNagpurIndia
  3. 3.Department of MathematicsM.O.P. Vaishnav College for Women, NungambakkamChennaiIndia

Personalised recommendations