, Volume 36, Issue 6, pp 611–619 | Cite as

Scaling theory of quantum resistance distributions in disordered systems

  • A M Jayannavar


We have derived explicitly, the large scale distribution of quantum Ohmic resistance of a disordered one-dimensional conductor. We show that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder we recover single parameter scaling, consistent with existing theoretical treatments.


Localization quantum Ohmic resistance scaling Fokker-Planck equations invariant imbedding 


72.15 72.10 72.90 71.55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979Phys. Rev. Lett. 42 673CrossRefADSGoogle Scholar
  2. Abrahams E and Stephen M 1980J. Phys. C13 L377Google Scholar
  3. Abrikosov A A 1981Solid State Commun. 37 997CrossRefADSGoogle Scholar
  4. Altshuler B L and Khmelnitskii D E 1985Pis’ma Zh. Eksp. Teor. Fiz. 42 291 [JETP Lett. 198542 359]ADSGoogle Scholar
  5. Altshuler B L, Kravtsov V E and Lerner I V 1986Pis’ma Zh. Eksp. Teor. Fiz. 43 342 [JETP Lett. 198643 441]ADSGoogle Scholar
  6. Anderson P W, Thouless D J, Abrahams E and Fisher D S 1980Phys. Rev. B22 3519ADSMathSciNetGoogle Scholar
  7. Bellman R and Wing G M 1976An introduction to invariant imbedding (New York: Wiley)Google Scholar
  8. Bishop D J and Dolan G J 1985Phys. Rev. Lett. 55 2911CrossRefADSGoogle Scholar
  9. Chandrasekhar S 1960Radiative transfer (New York: Dover)Google Scholar
  10. Cohen A, Roth Y and Shapiro B 1988Phys. Rev. B38 12125ADSGoogle Scholar
  11. Efetov K B 1984Pis’ma Zh. Eksp. Teor. Fiz. 40 17 [JETP Lett. 198440 738]ADSGoogle Scholar
  12. Erdos P and Herndon R C 1982Adv. Phys. 31 63CrossRefADSGoogle Scholar
  13. Farrell M E, Bishop M F, Kumar N and Lawrence W E 1985Phys. Rev. Lett. 55 626CrossRefADSGoogle Scholar
  14. Giordano N 1980Phys. Rev. B22 5635ADSGoogle Scholar
  15. Heinrichs J 1986Phys. Rev. B33 5261ADSGoogle Scholar
  16. Heinrichs J, Jayannavar A M and Kumar N 1988Solid State Commun. 67 1103CrossRefADSGoogle Scholar
  17. Heinrichs J 1990J. Phys. Condens. Matter,2 1559CrossRefADSGoogle Scholar
  18. Ioffe L B, Sagdeev I R and Vinokur V M 1985J. Phys. C18 L641Google Scholar
  19. Jayannavar A M and Kumar N 1982Phys. Rev. Lett. 48 553CrossRefADSGoogle Scholar
  20. Jayannavar A M 1990Solid State Commun. 73 247CrossRefADSGoogle Scholar
  21. Kumar N 1983J. Phys. C16 L109Google Scholar
  22. Kumar N 1985Phys. Rev. B31 5513ADSGoogle Scholar
  23. Kumar N and Jayannavar A M 1986J. Phys. C19 L85Google Scholar
  24. Landauer R 1970Philos. Mag. 21 863CrossRefADSGoogle Scholar
  25. Lee P A and Stone A D 1985Phys. Rev. Lett. 55 1622CrossRefADSGoogle Scholar
  26. Melnikov V I 1980Zh. Eksp. Teor. Fiz. Pis’ma 32 244 [JETP Lett. 198032 225]ADSGoogle Scholar
  27. Novikov E A 1964Zh. Eksp. Teor. Fiz. 47 1919 [Sov. Phys. JETP 196520 1290]Google Scholar
  28. Rammal R and Doucot B 1987J. Phys. (Paris) 48 509Google Scholar
  29. Risken H 1984The Fokker-Planck equations (Berlin: Springer)Google Scholar
  30. Schleich W and Scully M O 1988Phys. Rev. A37 1261ADSGoogle Scholar
  31. Shapiro B 1987Philos. Mag. 56 1031CrossRefGoogle Scholar
  32. Stone A D, Allan D C and Joannopoulos J D 1983Phys. Rev. B27 836ADSGoogle Scholar
  33. van Kampen N G 1976Phys. Rep. C24 172Google Scholar

Copyright information

© Indian Academy of Sciences 1991

Authors and Affiliations

  • A M Jayannavar
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations