Pramana

, Volume 29, Issue 1, pp 21–37 | Cite as

On the Goldstonic gravitation theory

  • D Ivanenko
  • G Sardanashvily
Gravitation And Cosmology

Abstract

The physical specificity of gravity as a Goldstone-type field responsible for spontaneous breaking of space-time symmetries is investigated and extended up to supergravity. Problems of the Higgs gravitation vacuum and its matter sources are discussed. A particular “dislocation” structure of a space-time due to Poincaré translation gauge fields and the corresponding modification of Newton’s gravitational potential are predicted.

Keywords

Gauge theory gravity supergravity Goldstone field 

PACS Nos

04.50 11.15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler S 1982Rev. Mod. Phys. 54 729CrossRefADSGoogle Scholar
  2. Bender C, Cooper F and Guralnic G 1977Ann. Phys. 109 165CrossRefADSGoogle Scholar
  3. Berezin F 1966The method of second quantization (New York: Academic Press)MATHGoogle Scholar
  4. Birrel N and Davies P 1982Quantum fields in curved space (Cambridge, London, New York: Cambridge University Press)Google Scholar
  5. Bruzzo U and Ciancci R 1984Class. Quant. Grav. 1 213CrossRefADSMATHGoogle Scholar
  6. Catenacci R, Reina C and Teofilatto P 1985J. Math. Phys. 26 671MATHCrossRefADSMathSciNetGoogle Scholar
  7. Chen Y, Cook A and Metherell A 1984Proc. R. Soc. London A394 47ADSGoogle Scholar
  8. Daniel M and Viallet C 1980Rev. Mod. Phys. 52 175CrossRefADSMathSciNetGoogle Scholar
  9. Dass T 1984Pramana — J. Phys. 23 433ADSGoogle Scholar
  10. DeRujula A 1986Phys. Lett. B180 213ADSGoogle Scholar
  11. DeWitt B 1965Dynamical theory of groups and fields (New York: Gordon and Breach)MATHGoogle Scholar
  12. DeWitt B 1984Supermanifolds (Cambridge: University Press)MATHGoogle Scholar
  13. Dixmier J 1969Les C*-algèbres et leurs représentations (Paris: Gauthier-Villars)Google Scholar
  14. Edelen D 1985Int. J. Theor. Phys. 24 659MATHCrossRefMathSciNetGoogle Scholar
  15. Emch G 1972Algebraic methods in statistical mechanics and quantum field theory (London and New York: John Wiley)MATHGoogle Scholar
  16. Fujii Y 1986Prog. Theor. Phys. 76 325CrossRefADSGoogle Scholar
  17. Holding S, Stacey F and Tuck G 1986Phys. Rev. D33 3487ADSGoogle Scholar
  18. Hoskins J, Newman D, Spero R and Shultz J 1985Phys. Rev. D32 3084ADSGoogle Scholar
  19. Ivanenko D 1980 inRelativity, quanta and cosmology (New York: Johnson Repr. Corp.) p. 295Google Scholar
  20. Ivanenko D, Pronin P and Sardanashvily G 1985Gauge gravitation theory (Moscow: University Press)Google Scholar
  21. Ivanenko D and Sardanashvily G 1981Lett. Nuovo Cimento 30 220CrossRefGoogle Scholar
  22. Ivanenko D and Sardanashvily G 1983Phys. Rep. 94 1CrossRefADSMathSciNetGoogle Scholar
  23. Ivanenko D and Sardanashvily G 1985Gravitation (Kiev: Naukova Dumka)Google Scholar
  24. Ivanenko D and Sardanashvily G 1986Prog. Theor. Phys. 75 969CrossRefADSMathSciNetGoogle Scholar
  25. Jadczyk A and Pilch K 1981Commun. Math. Phys. 78 373MATHCrossRefADSMathSciNetGoogle Scholar
  26. Kadić A and Edelen D 1983A gauge theory of dislocations and disclinations (Berlin and New York: Springer-Verlag)MATHGoogle Scholar
  27. Kawai T 1986Gen. Relativ. Gravit. 18 995MATHCrossRefADSMathSciNetGoogle Scholar
  28. Kawati S and Miyata H 1981Phys. Rev. D23 3010ADSGoogle Scholar
  29. Kobayashi S and Nomizu K 1963Foundation of differential geometry (New York, London and Sydney: John Wiley)Google Scholar
  30. Kostant B 1977Graded manifolds, graded Lie theory and prequantization, Lect. Notes Math. 570 177MathSciNetGoogle Scholar
  31. Kröner E 1982Gauge field theories of defects in solids (Stuttgart: Max-Plank-Inst.)Google Scholar
  32. Logunov A and Mestvirichvily 1986Found. Phys. 16 1CrossRefADSMathSciNetGoogle Scholar
  33. Meszaros A 1985Astrophys. Space Sci. 111 399ADSMathSciNetGoogle Scholar
  34. Nikolova L and Rizov V 1984Rep. Math. Phys. 20 287MATHCrossRefMathSciNetADSGoogle Scholar
  35. Rogers A 1980J. Math. Phys. 21 1352MATHCrossRefADSMathSciNetGoogle Scholar
  36. Rogers A 1985J. Math. Phys. 26 385MATHCrossRefADSMathSciNetGoogle Scholar
  37. Rogers A 1986J. Math. Phys. 27 710MATHCrossRefADSMathSciNetGoogle Scholar
  38. Sanders R 1986Astron. Astrophys. 154 135ADSGoogle Scholar
  39. Sardanashvily G 1980Phys. Lett. A75 257ADSMathSciNetGoogle Scholar
  40. Sardanashvily G 1983Czech. J. Phys. B33 610CrossRefADSMathSciNetGoogle Scholar
  41. Sardanashvily G 1984Ann. Phys. (Leipzig) 41 23ADSMathSciNetGoogle Scholar
  42. Sardanashvily G and Gogberashvily M 1986 in Contributed papers of 11th Int. Conf. on General Relativity and Gravitation, Stockholm, 116Google Scholar
  43. Sardanashvily G and Zakharov O 1986Pramana—J. Phys. 26 L295Google Scholar
  44. Simon B 1974The P(ϕ) 2 Euclidean (quantum) field theory (Princeton: Univ. Press).Google Scholar
  45. Sinha K P 1985Pramana—J. Phys. 25 467ADSCrossRefGoogle Scholar
  46. Trautman A 1979Czech. J. Phys. B29 107CrossRefADSMathSciNetGoogle Scholar
  47. Treder H.-J. 1971Gravitations theorie und Äquivalenzprinzip (Berlin: Academic-Verlag)Google Scholar

Copyright information

© Indian Academy of Sciences 1987

Authors and Affiliations

  • D Ivanenko
    • 1
  • G Sardanashvily
    • 1
  1. 1.Physics FacultyMoscow UniversityMoscowUSSR

Personalised recommendations