Advertisement

Pramana

, Volume 48, Issue 4, pp 937–950 | Cite as

Resonance de-enhancement in the 21 A g state oftrans-azobenzene

  • Nandita Biswas
  • Siva UmapathyEmail author
Article

Abstract

We analyze the origin of de-enhancement for a number of vibrational modes in the 21 A g excited state oftrans-azobenzene. We have used the time-dependent wave packet analysis of the RR intensities by including the multimode damping effects in the calculation. This avoids the use of unrealistically large values for the damping parameter. It is concluded that the de-enhancement is caused by the interference between the two uncoupled electronic states, and that the intensities observed under the so-called symmetry forbidden 21 A g ← 11 A g transition are purely due to resonance excitation. It is also observed that the use of the time-dependent approach to study the de-enhancement effects caused by multiple electronic states on the RR intensities is not necessarily useful if one is interested in the structural dynamics.

Keywords

Resonance Raman intensities de-enhancement time-dependent wave-packet analysis trans-azobenzene 

PACS No.

33.20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A B Myers and R A Mathies, inBiological Applications of Raman Spectroscopy edited by T G Spiro (John Wiley and Sons Inc., New York, 1987) vol. 2, p. 1Google Scholar
  2. [2]
    J I Zink and K-S K Shin, inAdvances in Photochemistry (John Wiley and Sons Inc., New York, 1991) vol. 16, p. 119CrossRefGoogle Scholar
  3. [3]
    A B Myers, inLaser Techniques in Chemistry edited by A B Myers and T R Rizzo (John Wiley and Sons Inc., New York, 1995) vol. 23, p. 325Google Scholar
  4. [4]
    D L Phillips and A B Myers,J. Chem. Phys. 95, 226 (1991)CrossRefADSGoogle Scholar
  5. [5]
    F Markel and A B Myers,J. Chem. Phys. 98, 21 (1993)CrossRefADSGoogle Scholar
  6. [6]
    G A Schick and D F Bocian,J. Raman Spectrosc. 11, 27 (1981)CrossRefADSGoogle Scholar
  7. [7]
    L A Nafie, R W Pastor, J C Dabrowiak and W H Woodruff,J. Am. Chem. Soc. 98, 8007 (1976)CrossRefGoogle Scholar
  8. [8] (a)
    S P A Fodor, R A Copeland, C A Grygon and T G Spiro,J. Am. Chem. Soc. 111, 5509 (1989)CrossRefGoogle Scholar
  9. [8] (b)
    Y M Bosworth and R J H Clark,J. Chem. Soc. Dalton Trans. p. 1749 (1974)Google Scholar
  10. [8] (c)
    Y M Bosworth, R J H Clark and P C Turtle,J. Chem. Soc. Dalton Trans. p. 2027 (1975)Google Scholar
  11. [9] (a)
    P Stein, V Miskowski, W H Woodruff, J P Griffin, K G Werner, B P Gaber and T G Spiro,J. Chem. Phys. 64, 2159 (1976)CrossRefADSGoogle Scholar
  12. [9] (b)
    B B Johnson and W L Peticolas,Ann. Rev. Phys. Chem. 27, 465 (1976)CrossRefGoogle Scholar
  13. [9] (c)
    T G Spiro and P Stein,Ann. Rev. Phys. Chem. 28, 501 (1977)CrossRefGoogle Scholar
  14. [10] (a)
    M Z Zgierski,J. Raman Spectrosc. 6, 53 (1977)CrossRefADSGoogle Scholar
  15. [10] (b)
    M Z Zgierski,J. Raman Spectrosc. 5, 181 (1976)CrossRefADSGoogle Scholar
  16. [11]
    G M Korenowski, L D Ziegler and A C Albrecht,J. Chem. Phys. 68, 1248 (1978)CrossRefADSGoogle Scholar
  17. [12]
    S A Asher and C R Johnson,J. Phys. Chem. 89, 1375 (1985)CrossRefGoogle Scholar
  18. [13]
    P Hildebrandt, M Tsuboi and T G Spiro,J. Phys. Chem. 94, 2274 (1990)CrossRefGoogle Scholar
  19. [14]
    W Siebrand and M Z Zgierski,J. Chem. Phys. 71, 3561 (1979)CrossRefADSGoogle Scholar
  20. [15] (a)
    L Rimai, M E Heyde, H C Heller and D Gill,Chem. Phys. Lett. 10, 207 (1971)CrossRefADSGoogle Scholar
  21. [15] (b)
    J Friedman and R M Hochstrasser,Chem. Phys. Lett. 32, 414 (1975)CrossRefADSGoogle Scholar
  22. [16]
    K-S K Shin and J I Zink,J. Am. Chem. Soc. 112, 7148 (1990)CrossRefGoogle Scholar
  23. [17]
    C Reber and J I Zink,J. Phys. Chem. 96, 571 (1992)CrossRefGoogle Scholar
  24. [18]
    I W Sztainbuch and G E Leroi,J. Chem. Phys. 93, 4642 (1990)CrossRefADSGoogle Scholar
  25. [19]
    H A Kramers and W Heisenberg,Z. Phys. 31, 681 (1925)CrossRefADSGoogle Scholar
  26. [20]
    P A M Dirac,Proc. R. Soc. London 114, 710 (1927)CrossRefADSGoogle Scholar
  27. [21]
    A C Albrecht and M C Hutley,J. Chem. Phys. 55, 4438 (1971)CrossRefADSGoogle Scholar
  28. [22] (a)
    E J Heller,J. Chem. Phys. 62, 1544 (1975)CrossRefADSGoogle Scholar
  29. [22] (b)
    E J Heller,J. Chem. Phys. 68, 2066 (1978)CrossRefADSGoogle Scholar
  30. [22] (c)
    K C Kulander and E J Heller,J. Chem. Phys. 69, 2439 (1978)CrossRefADSGoogle Scholar
  31. [22] (d)
    S-Y Lee and E J Heller,J. Chem. Phys. 71, 4777 (1979)CrossRefADSGoogle Scholar
  32. [22] (e)
    E J Heller,Acc. Chem. Res. 14, 368 (1981)CrossRefADSGoogle Scholar
  33. [22] (f)
    A B Myers, R A Mathies, D J Tannor and E J Heller,J. Chem. Phys. 77, 3857 (1982)CrossRefADSGoogle Scholar
  34. [22] (g)
    D J Tannor and E J Heller,J. Chem. Phys. 77, 202 (1982)CrossRefADSGoogle Scholar
  35. [22] (h)
    E J Heller, R L Sundberg and D J Tannor,J. Phys. Chem. 86, 1822 (1982)CrossRefGoogle Scholar
  36. [23]
    H Rau, inPhotochromism: Molecules and systems edited by H Durr and H Bouas-Lauran, (Amsterdam, Elsevier, 1990) p.165Google Scholar
  37. [24]
    H Rau and S Yu-Quan,J. Photochem. Photobiol. A: Chemistry 42, 321 (1988)CrossRefGoogle Scholar
  38. [25]
    N Biswas and S Umapathy,Chem. Phys. Lett. 236, 24 (1995)CrossRefADSGoogle Scholar
  39. [26]
    H Okamoto, H Hamaguchi and M Tasumi,Chem. Phys. Lett. 130, 185 (1986)CrossRefADSGoogle Scholar
  40. [27]
    A B Myers and R A Mathies,J. Chem. Phys. 81, 1552 (1984)CrossRefADSGoogle Scholar
  41. [28]
    J Tang and A C Albrecht, inRaman Spectroscopy edited by H A Szymanski (Plenum, New York, 1970) vol. 2, p. 33Google Scholar
  42. [29]
    A C Albrecht,J. Chem. Phys. 34, 1476 (1961)CrossRefADSGoogle Scholar
  43. [30]
    N Biswas, S Umapathy, C Kalyanaraman and N Sathyamurthy,Proc. Indian Acad. Sci. 107, 233 (1995)Google Scholar
  44. [31]
    R Kosloff,J. Phys. Chem. 92, 2087 (1988)CrossRefGoogle Scholar
  45. [32]
    S O Williams and D G Imre,J. Phys. Chem. 92, 3363 (1988)CrossRefGoogle Scholar
  46. [33]
    M Abramowitz and I A Stegun,Handbook of Mathematical Function (Dover, New York, 1968) p. 886Google Scholar
  47. [34]
    B Tellerer, H H Hacker and J Brandmuller,Indian. J. Pure Appl. Phys. 9, 903 (1971)Google Scholar
  48. [35]
    S Monti, G Orlandi and P Palmieri,Chem. Phys. 71, 87 (1982)CrossRefGoogle Scholar
  49. [36]
    R J H Clark and T J Dines,Angew Chem. Int. Ed. Engl. 25, 131 (1986)CrossRefGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1997

Authors and Affiliations

  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations