The Indian Journal of Pediatrics

, Volume 66, Issue 3, pp 375–379

Evaluation of bone mineral density in children with diabetes mellitus

  • B. Ersoy
  • D. Gökşen
  • S. Darcan
  • E. Mavi
  • C. Öztürk
Original Article

Abstract

Multiple studies have documented reduction in peripheral bone mass in children with insulin dependent diabetes mellitus (IDDM). In this study, the bone mineral density (BMD) of the lumbar vertebrae (L2–L4) was measured by dual photon absorptiometry in 14 female and 16 male diabetic patients of age 11 to 16 years with varying clinical duration. Twenty three children between 11 to 16 years with normal anthropometric measurements between 10th and 97th percentile and no known history of metabolic bone disease served as a control group. BMD values, weight, height, body mass index, metabolic, biochemical and growth parameters of the study group were compared with those of the control group. BMD (L2 AP 0.732±0.15 gm/cm2, L2 lateral 0.534 ±0.09 gm/cm2in the study group and 0.812±0.63 gm/cm2 and 0.619±0.20 gm/cm2 in the control group) and osteoccalcin (10.10±3.40 ng/ml and 23.12±2.74 ng/ml in diabetes and control respectively) levels were significantly lower in diabetic patients (p<0.05, p<0.01 respectively). Within the study group BMD correlated positively with age but not with the duration of the disease nor with the level of metabolic control.

Key words

Bone mineral density Insulin dependent diabetes mellitus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marvin EL, Vincenza CB, Louis VA. Effects of diabetes mellitus in juvenile and adult onset diabetes.N Engl J Med 1976; 294: 241–245.CrossRefGoogle Scholar
  2. 2.
    Stephan WP, David PM, Danial F, An DT, Gerald WO, Ben HB. Bone mineral density of the lumbar vertebrae in children and adolescents with insulin-dependent diabetes mellitus.J Pediatr 1992; 120: 541–545.CrossRefGoogle Scholar
  3. 3.
    Stephan WP, David PM, Daniel F, Judy LP, Margaret GM, Ben HB. Spinal bone mineral density in children aged 5.00 through 11.99 years.AJDC 1990; 144: 1346–1348.Google Scholar
  4. 4.
    Siu LH, Solomon E, Conrad CJ. A prospective study of bone mass in patients with type 1 diabetes.J Clin Endocrinol Metab 1985; 60: 74–80.Google Scholar
  5. 5.
    Catherine G, Pierre B, Louis D, Pierre C, Pierre JM, Pierre DD. Measurement of bone mineral content of the lumbar spine by dual energy X-ray absorptiometry in normal children. Correlations with growth parameters.J Clin Endocrinol Metab 1990; 70: 1330–1333.Google Scholar
  6. 6.
    Hosada K, Kanzaki S, Eguchi Het al. Secretion of osteocalcin and its propeptide from human osteoblastic cells: dissociation of the secretory patterns of osteocalcin and its propeptide.J Bone Miner Res 1993; 8: 553–565.CrossRefGoogle Scholar
  7. 7.
    Rio DL, Carrascosa A, Pons F, Gusinye M, Yeste D, Domenech MF. Bone mineral density of lumbar spine in white mediterranean Spanish children and adolescents: Changes related to age, sex, and puberty.Pediatr Res 1994; 35: 362–366.PubMedCrossRefGoogle Scholar
  8. 8.
    Waud CE, Markes SC, Lev R, Baran DT. Bone mineral density in the femur and lumbar vertebrae decreases after twelve weeks of diabetes in spontaneously diabetic prone BB/Worcester rats.Calcif Tissue Int 1994; 54: 237–240.PubMedCrossRefGoogle Scholar
  9. 9.
    Roe TF, Mora S, Costin Get al. Vertebral bone density in insulin dependent diabetic children.Metabolism 1991; 40: 967–971.PubMedCrossRefGoogle Scholar
  10. 10.
    Scott D, Robins SP, Nicol P, Chen XB, Buchan W. Effects of low phoshate intake on bone mineral metabolism and microbial protein systhesis in lambs.Exp Physicol 1994; 79 (2): 183–187.Google Scholar
  11. 11.
    Bouillon R. Diabetic bone disease. Low turnover osteoporosis related to decreased IGF-1 production.Verh K Acad Geneeskd Belg 1992; 54 (4): 365–391.PubMedGoogle Scholar
  12. 12.
    Juul A, Dagaard P, Blum FWet al. Serum levels of Insulin-like growth factor (IGF) Binding protein-3 (IGFBP-3) in healthy infants, children and adolescent. The relation to IGF-1, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation.J Clin Endoc Metab 1995; 80 (8): 2534–2542.CrossRefGoogle Scholar
  13. 13.
    McNair P, Madsbad S, Christensen MSet al. Hypoparathyroidism in diabetes mellitus.Acta Endocronologica 1981; 96: 81–86.Google Scholar
  14. 14.
    McNair P, Madsbad S, Christensen MS, Christensen C, Faber OK, Binder C, Transbol I. Bone mineral loss in insulin treated diabetes mellitus: studies on pathogenesis.Acta Endocrinol 1979; 90: 463–467.PubMedGoogle Scholar
  15. 15.
    Hough FS. Alterations of bone and mineral metabolism in diabetes mellitus.SAMJ 1987; 80: 120–126.Google Scholar
  16. 16.
    Heath H, Lambert PW, Service FJ. Calcium homeostasis in diabetes mellitus.J Clin Endocrinol Metab. 1979; 49: 462–466.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenbloom AL, Lezotte CD, Weber FT, Gudat Jet al. Diminution of bone mass in childhood diabetes.Diabetes 1977; 26: 1052–1055.PubMedCrossRefGoogle Scholar
  18. 18.
    Forest MG. Adrenal steroid excess.Clinical Paediatric Endocrinology. Brook (ed), Blackwell science. Third Edition 1995; p. 499–535.Google Scholar
  19. 19.
    Johnston CC, Slemenda CW, Melton JL. Clinical use of bone densitometry.N Eng J Metabol 1991; 324 (16): 1105–1109.Google Scholar

Copyright information

© Dr. K C Chaudhuri Foundation 1999

Authors and Affiliations

  • B. Ersoy
    • 1
  • D. Gökşen
    • 2
  • S. Darcan
    • 1
  • E. Mavi
    • 1
  • C. Öztürk
    • 3
  1. 1.Department of Pediatric EndocrinologyEge University Faculty of MedicineİzmirTurkey
  2. 2.Division of PediatricsEge University Faculty of MedicineİzmirTurkey
  3. 3.Division of Physical Therapy and RehabilitationEge University Faculty of MedicineİzmirTurkey
  4. 4.IzmirTürkiye

Personalised recommendations