Advertisement

Rendiconti del Circolo Matematico di Palermo

, Volume 36, Issue 3, pp 482–506 | Cite as

A Riemann type integration and the fundamental theorem of calculus

  • Washek F. Pfeffer
Article

Abstract

In a self-contained presentation aimed to non-specialists, we discuss the recent development of a new, well behaved, Riemann type integral on differentiable manifolds with respect to which the exterior derivative of any differentiable form is integrable and the Stokes formula holds.

Motto

If one can calculate the integral of a function then the function ought to be integrable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [F]
    Federer H.,Geometric measure theory Springer, New York, 1969.zbMATHGoogle Scholar
  2. [H]
    Henstock R.,A problem in two dimensional integration, J. Austral. Math Soc. (Ser. A)35 (1983), 386–404.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [JK]
    Jarnik J., Kurzweil J.,A nonabsolutely convergent integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J.35, (1985), 116–139.MathSciNetGoogle Scholar
  4. [JKS]
    Jarnik J., Kurzweil J., Schwabik S.,On approach to multiple nonabsolutely convergent integral, Casopis. Pest. Mat.108, (1983), 356–380.MathSciNetzbMATHGoogle Scholar
  5. [Ma]
    Marik J.,The surface integral, Czechoslovak Math. J.6 (1956), 522–558.MathSciNetGoogle Scholar
  6. [Mc]
    McShane E.J.,A unified theory of integration, American Math. Monthly80 (1973), 349–359.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [Mw]
    Mawhin J.,Generalized multiple Peron integrals and the Green-Goursat theorem for differentiable vector fields, Czechoslovak Math. J.31 (1981), 614–632.MathSciNetGoogle Scholar
  8. [N]
    Natanson L.P.,Theory of functions of a real variable, vol. 2, Ungar, New York, 1960.Google Scholar
  9. [P1]
    Pfeffer W.F.,The Riemann-Stieltjes approach to integration, TWISK 187, NRIMS: CSIR., Pretoria, 1980.Google Scholar
  10. [P2]
    Pfeffer W.F.,The divergence theorem, Trans. AMS295 (1986), 665–685.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [P3]
    Pfeffer W.F.,The multidimensional fundamental theorem of calculus, J. Australian Math. Soc., (Ser. A) 43 (1987), 143–170.zbMATHMathSciNetGoogle Scholar
  12. [R]
    Rudin W.,Principles of mathematical analysis, McGraw-Hill, New York, 1976.zbMATHGoogle Scholar
  13. [Sa]
    Saks S.,Theory of the integral, Dover, New York 1964.Google Scholar
  14. [Se]
    Sargent W.L.C.,On integrability of a product J. London Math. Soc.23 (1948), 28–34.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [T]
    Tolstov G.P.,On the curvilinear and iterated integral, Steklov Math. Inst. Moscow, 1950 (in Russian); Math. Rev.13 (1952), 448.Google Scholar
  16. [W]
    Whitney H.,Geometric integration theory, Princeton Univ. Press, Princeton, 1957.zbMATHGoogle Scholar

Copyright information

© Springer 1987

Authors and Affiliations

  • Washek F. Pfeffer
    • 1
  1. 1.Department of MathematicsUniversity of CalliforniaDavisU.S.A.

Personalised recommendations