Advertisement

Real-fluid effects in flow cavitation

  • Vijay H. Arakeri
Article
  • 22 Downloads

Abstract

The possible role of reaj fluid effects in two aspects of flow cavitation namely inception and separation is discussed. This is primarily qualitative in the case of inception whereas some quantitative results are presented in the case of separation. Existing evidence clearly indicates that in particular viscous effects can play a significant role in determining the conditions for cavitation inception and in determining the location of cavitation separation from smooth bodies.

Keywords

Flow cavitation inception separation real fluid effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta A J & Hamaguchi H 1967 Cavitation inception on the ITTC standard headform. Rep. No. E-149-1 (Pasadena: California Institute of Technology)Google Scholar
  2. Acosta A J & Parkin B R 1975J. Ship. Res. 19 193Google Scholar
  3. Arakeri V H 1971 Water tunnel investigations of scale effects in cavitation detachment from smooth slender bodies and characteristics of flow past a bi-convex hydrofoil. Rep. No. E-79 A. 12 (Pasadena: California Institute of Technology)Google Scholar
  4. Arakeri V H 1974J. Fluids Engg. 97 82Google Scholar
  5. Arakeri V H 1975J. Fluid Mech. 68 779CrossRefGoogle Scholar
  6. Arakeri V H 1979Proc. Indian Acad. Sci. C2 149Google Scholar
  7. Arakeri V H & Acosta A J 1973J. Fluids Engg. 95 519Google Scholar
  8. Arakeri V H & Acosta A J 1979 International Symposium on Cavitation Inception (New York ASME), p. 1Google Scholar
  9. Armstrong A H 1953 Abrupt and smooth separation in plane and axisymmetric flow. Mem. Arm Res. Est. 6. B. No. 22/63Google Scholar
  10. Brennen C 1969aJ. Fluid Mech. 37 671zbMATHCrossRefGoogle Scholar
  11. Brennen C 1969bCavitation state of knowledge (New York: ASME) p. 141Google Scholar
  12. Brennen C 1970J. Fluid Mech. 44 51CrossRefGoogle Scholar
  13. Eller AI & Flynn H G 1965J. Acoust. Soc. Am. 37 493CrossRefMathSciNetGoogle Scholar
  14. Flynn H G 1964Physical acoustics ed. W P Mason (New York: Academic Press)1 (Part B) p. 127Google Scholar
  15. Gates E M & Acosta A J 1978 Twelfth symposium on naval hydrodynamics, Washington, Office of Naval Res., US Dept. of NavyGoogle Scholar
  16. Hsieh D Y & Plesset M S 1961J. Acoust. Soc. Am. 33 206.CrossRefMathSciNetGoogle Scholar
  17. Huang T T & Hannan D E 1975 Pressure fluctuations in the regions of flow transition. Rep. No. 4723, Naval Ship Res. and Dev. Centre, Washington, DC.Google Scholar
  18. Johnson V E & Hsieh T 1966 Sixth symposium in naval hydrodynamics, Washington, Office of Naval Res. US Dept. of Navy.Google Scholar
  19. Keller A P 1972J. Basic Engg 94 917Google Scholar
  20. Klebanoff R S and Tidstrom K D 1972Phys. Fluids 15 1173CrossRefGoogle Scholar
  21. Knapp R T, Daily J W & Hammitt F G 1970Cavitation (New York: McGraw Hill) Ch. 3Google Scholar
  22. Neppiras E A 1980Phys. Rep. 61 Google Scholar
  23. Parkin B R 1979 A theory for cavitation inception in a flow having laminar separation, ARL RM No. 79-198, AD A082 851, The Pennsylvania State University.Google Scholar
  24. Plesset M S 1949J. Appl. Mech. 16 277Google Scholar
  25. Wu TY 1968Basic developments in fluid dynamics (New York: Academic Press)Google Scholar

Copyright information

© Indian Academy of Sciences 1982

Authors and Affiliations

  • Vijay H. Arakeri
    • 1
  1. 1.Department of Mechanical EngineeringIndian Institute of ScienceBangalore

Personalised recommendations