Kergin interpolants at the roots of unity approximate C2 functions

Article

Abstract

We establish a new formula for Kergin interpolation in the plane and use it to prove that the Kergin interpolation polynomials at the roots of unity of a function of classC2 in a neighborhood of the unit disc\({\mathbb{D}}\) converge uniformly to the function on\({\mathbb{D}}\).

References

  1. [B]
    L. BosOn Kergin interpolation in the disk, J. Approx. Theory37 (1982), 251–261.CrossRefMathSciNetGoogle Scholar
  2. [BC]
    T. Bloom and J. P. Calvi,The distribution of good points for Kergin interpolation, to appear.Google Scholar
  3. [Br]
    L. Brutman,On the polynomial and rational projections in the complex plane, SIAM J. Numer. Anal.17(1980), 363–372.Google Scholar
  4. [dB]
    C. de Boor,Polynomial Interpolation, Proceedings of the International Congress of Mathematicians at Helsinki (1978), Academia Scientarium Fennica, Helsinki, 1980, pp. 917–922.Google Scholar
  5. [G]
    A. O. Gelfond,Calcul des différences finies, Dunod, Paris, 1963.Google Scholar
  6. [K]
    P. Kergin,A natural interpolation of C k functions, J. Approx. Theory29 (1980), 278–293.MATHCrossRefMathSciNetGoogle Scholar
  7. [M]
    C. Micchelli,A constructive approach to Kergin interpolant inn, Rocky Mountain J. Math.10(1980), 485–197.MATHMathSciNetCrossRefGoogle Scholar
  8. [MM]
    C. Micchelli and P. Milman,A formula for Kergin interpolation ink, J. Approx. Theory29(1980), 294–296.MATHCrossRefMathSciNetGoogle Scholar
  9. [R]
    T. J. Rivlin,The Chebyshev Polynomials, Wiley-Interscience, New York, 1974.MATHGoogle Scholar
  10. [Ra]
    D. L. Ragozin,Constructive polynomial approximation on spheres and projective spaces, Trans. Amer. Math. Soc.162 (1971), 157–170.CrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1997

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
  2. 2.Laboratoire de Mathématiques E. PicardUFRMIG Université Toulouse IIIToulouse CedexFrance

Personalised recommendations