Chinese Journal of Oceanology and Limnology

, Volume 21, Issue 3, pp 280–285 | Cite as

Toxicity and accumulation of selenite in four microalgae

  • Wang Dazhi
  • Cheng Zhaodi
  • Li Shaojing
  • Gao Yahui


The toxicity and bioaccumulation of selenite in four microalgae,Spirulina platensis, Dunaliella salina, Dunaliella bardawill andPhaeodactylum tricornutum cultured in the presence of selenite were investigated. Lower concentrations of selenite were generally nontoxic and frequently stimulated algal growth, while higher concentrations of selenite inhibited algal growth. Selenite was more toxic toD. salina andD. bardawill than toS. platensis andP. Tricornutum. All algae cultured in selenite were able to incorporate Se to different degrees, which depended on algal species. The distributions of selenite among intracellular macromolecular compounds were different among algal species: most of the selenite was associated with proteins inS. platensis, D. salina andD. bardawill, while most of the selenite was associated with lipids inP. tricornutum, which reflected the physiological differences among the algae. These observations suggest that algae are able to accumulate selenite and bind it with intracellular macromolecular compounds when exposed to high concentration of selenite. This may represent a form of storage or detoxification of selenite by the algae.

Key words

selenite microalgae toxicity accumulation intracellular distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boisson, F., Gnassia-Barelli, M., Romeo, M., 1995. Toxicity and Accumulation of selenite and selenate in the unicellular marine algaCricosphaera elongata.Arch. Environ. Contam. Toxicol. 28: 487–493.CrossRefGoogle Scholar
  2. Bottino, N. R., Banks, C. H., Irgolic, K. J. et al., 1984. Selenium containing amino acids and proteins in marine algae.Phytochemistry. 23: 2445–2452.CrossRefGoogle Scholar
  3. Canton, S. P., van Derveer, W. D., 1997. Selenium toxicity to wildlife: an argument for sediment based water quality criteria.Environ. Toxicol. Chem. 16: 1255–1259.CrossRefGoogle Scholar
  4. Carroll, B. I., Peters, G. M., Barford, J. P. et al., 1998. Microbial and redox dependent aspects of selenium biogeochemistry in a selenium contaminated lake. Lake Macquarie, NSW. Proceedings of the 2nd International Conference on Environmental Management. Wollongong. 10–13 Feb, Oxford: Elsevier, pp. 221–228Google Scholar
  5. Davies, W. A., Linkson, P. B., 1991. Selenium discharge from power station ash dams: Eraring, Vales point. Quantity, speciation and strategies for control. Department of Chemical Engineering, University of Sydney, Sydney.Google Scholar
  6. Fisher, N. S., Reinfelder, J. R., 1991. Assimilation of selenium in the marine copepodAcartia tonsa studied with a radiotracer ratio method.Marine Ecology Progress Series 70: 157–164.CrossRefGoogle Scholar
  7. Fries, L., 1982. Selenium stimulates growth of marine macroalgae in axenic culture.J. phycol. 18: 328–331.CrossRefGoogle Scholar
  8. Harrison, P. J., Yu, P. W., Thomspon, P. A. et al., 1988. Survey of selenium requirements in marine phytoplankton.Mar. Ecol. Prog. Ser. 47: 89–96.CrossRefGoogle Scholar
  9. Keller, M. D., Guillard, R. R. L., Provasoli, L. et al., 1984. Nutrition of some marine ultra-plankton clones from the Sargasso Sea.Eos. 65: 898.Google Scholar
  10. Keller, M. D., Selvin, R. C., Claus, W. et al., 1987. Media for the culture of oceanic ulraplanton.J. Phycol. 23: 633–638.CrossRefGoogle Scholar
  11. Lindstrom, K., Rhode, W., 1978. Selenium as a micronutrient for algae in laboratory experiments in some Swedish lakes.Hydrobiol. 70: 77–85.Google Scholar
  12. Matto, A. K., Baker, J. E., Moline, H. E., 1988. Induction by copper ions of ethylene production inSpirodela oligorrhiza: Evidence for a pathway independent of 1-aminocyclopropane-1-carboxlic acid:J. Plant. Physiol. 123: 193–202.CrossRefGoogle Scholar
  13. Padmaja, K., Prasad, D. D. K., Prasad, A. R. K., 1989. Effect of selenium on chlorophyll biosynthesis in mug bean seedlings.Phytochemistry.28: 3321–3324.CrossRefGoogle Scholar
  14. Padmaja, K., Somasekharaiah, B. V., Prasad, A. R. K., 1995. Inhibition of chlorophyll synthesis by selenium Involvement of lipoxygenase mediated lipid peroxidation and antioxidant enzymes.Photosynthetica.31: 1–7.Google Scholar
  15. Peters, G. M., Maher, W. A., Barford, J. P. et al., 1997. Selenium associations in estuarine sediments: redox effects.J. Water, Air and Soil Pollution 99: 275–282.Google Scholar
  16. Pintner, I. J., Provasoli, L., 1968. Heterotrophy in subdued light of 3chrysochromulina species.Bull Misak Mar. Biol. Inst. Kyoto Unv. 12: 25–31.Google Scholar
  17. Price, N. M., Harrison, P. J., 1988. Specific selenium-containing macromolecules in the marine diatomThalassiosira pseudonana.Plant Physiol. 86: 192–199.CrossRefGoogle Scholar
  18. Price, N. M., Thompson, P. A., Harrison, P. J., 1987. Selenium: An essential element for growth for coastal marine diatomThalassioira pseudonana (Bacillariophyceae).J. Phycol. 23: 1–9.CrossRefGoogle Scholar
  19. Ray, N. R., Ray, A. K., 1975. Liver succinoxidase and kidney dehydrogenase activities on selenium toxicity.Insian Vet. J. 52: 267–270.Google Scholar
  20. Robberecht, H., van Grieken R., 1982. Selenium in environmental waters: determination and concentration levels.Talanta,29: 823–844.CrossRefGoogle Scholar
  21. Shift, A., 1954a. Sulphur-selenium antagonism. I: Anti-metabolic action of selenate on the growth ofChlorella vulgaris.Am. J. Bot. 41: 223–230.CrossRefGoogle Scholar
  22. Shift, A., 1954b. Sulphur-selenium antagonism. II: Anti-metabolic action of selenomethionine on the growth ofChlorella vulgaris.Am. J. Bot. 41: 345–352.CrossRefGoogle Scholar
  23. Sielicki, M., Burnhant, J. C., 1973. The effects of selenite on the ohysiological and morphological properties of the blue-green algaPhormidium luridum var. Olivacea.J. Phycol. 9: 509–514.Google Scholar
  24. Terry, K. L., Hirata, J., Laws, E. A., 1983. Light-limited growth of two strains of the marine diatomPhaeodactylum tricornutum Bohlin: chemical composition, carbon partitioning ad the diel periodicity of physiological processes.J. Exp. Mar. Biol. Ecol. 68: 209–227.CrossRefGoogle Scholar
  25. Viso, A. C., Boisson, F., Roméo, M. et al., 1989. Combined effects of sulphate, selenium (selenate or selenite) and duration of experiment on a coenocytic alga Bryopsis sp.Mar. Environ. Res. 28: 515–519.CrossRefGoogle Scholar
  26. Wang, Z. J., Xie, S. M., Peng, A., 1996. Distribution of Se in soybean samples with different Se concentration.J. Agric. Food. Chem. 44: 2754–2759.CrossRefGoogle Scholar
  27. Wheeler, A. E., Zingaro, R. A. Irgolic, K. et al., 1982. The effect of selenate, selenite and sulfate on the growth of six unicellular marine algae.J. Exp. Mar. Biol. 57: 181–194.CrossRefGoogle Scholar
  28. Wrench, J. J., 1978. Selenium metabolism in the marine phytoplanktersTetraselmis tetrathele andDunaliella minuta.Mar. Biol. 49: 231–236.CrossRefGoogle Scholar
  29. Wong, D., Oliveira, L., 1991. Effects of selenite and selenate on growth and motility of seven species of marine microalgae.Can. J. Fish. Aquat. Sci. 48: 1193–1200.CrossRefGoogle Scholar

Copyright information

© Science Press 2003

Authors and Affiliations

  • Wang Dazhi
    • 1
  • Cheng Zhaodi
    • 2
  • Li Shaojing
    • 3
  • Gao Yahui
    • 1
  1. 1.Key Laboratory for Marine Environmental Science of Ministry of Education/Environmental Science Research CenterXiamen UniversityXiamenChina
  2. 2.Department of BiologyXiamen UniversityXiamenChina
  3. 3.Department of OceanographyXiamen UniversityXiamenChina

Personalised recommendations