Chinese Journal of Oceanology and Limnology

, Volume 17, Issue 4, pp 289–299 | Cite as

A three-dimensional coastal barotropic model in generalized curvilinear grids

  • Bao Xian-wen
  • Sun Wen-xin
  • Shi Feng-yan


The method of automatically generating generalized curvilinear meshes has many advantages and is beginning to be used in ocean simulations. This three-dimensional (3-D) coastal barotropic model in generalized curvilinear grids was developed to simulate theM 2,S 2,K 1 andO 1 tidal waves in the Bohai Sea, China. The numerical results agreeing with observations showed that the method is an effective tool for improving accuracy of simulations in shallow shelf seas, especially in the near coast region, if the pseudo effect there usually caused by rectangular grids can be removed.

Key words

three-dimensions barotropic model curvilinear grids Bohai Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Androsov, A. A., Vol’tzinger, N. E., Liberman, Y. M., 1997. A two-dimensional tidal model of the Barents Sea.Oceanology 37(1): 16–22.Google Scholar
  2. Brackbill, J. U., Saltzman, J. S., 1982. Adaptive zoning for singular problems in two dimensions.J. Comput. Phys. 15: 229–319.Google Scholar
  3. Dou, Z. X., Yang, L. W., Ozer, J., 1993. A three-dimensional model for simulation of tide and tidal currents in the Bohai Sea,Acta Oceano. Sinica. 15(5): 1–15.Google Scholar
  4. Fang, G. H., Ichiyc, T., 1983. On the vertical structure of tidal currents in a homogeneous sea.Geophys. J. Roy. Astr. Soc. 73:65–78.Google Scholar
  5. Fang, G. H., Yang, J. F., 1985. A two-dimensional model for simulation of tide in the Bohai Sea,Chin. J. Oceanol. Limnol. 16(4): 377–346.Google Scholar
  6. Huang, Z. K., 1991. Tidal waves in the Bohai Sea and their variations.J. Ocean Univer. Qingdao 21(2): 1–11.Google Scholar
  7. Huang, D. J., Cheng, Z. Y., Su, J. R., 1996. The application of 3D shelf sea model in the Bohai Sea.Acta. Oceano. Sinica. 18(5): 1–13.Google Scholar
  8. Lardner, R. W., Das, S. K., 1994. Optimal estimation of eddy viscosity for a quasi-three-dimensional numerical tidal and storm surge model.Int. J. Numer. Methods Fluids 18: 295–312.CrossRefGoogle Scholar
  9. Liu, Z., Zeng, Q. C., Li, R. F., 1995. The application of energy-conservative adaptive mesh model in the computation of monthly mean currents of the South China Sea.J. Atmos. Sci. 19(1): 40–51.Google Scholar
  10. Shi, F. Y., 1995. On moving boundary numerical models of coastal sea dynamics. Ph. D. thesis of Ocean University of Qingdao, 105p.Google Scholar
  11. Shi, F. Y., Sun W. X., 1995. A variable boundary model of storm surge flooding in generalized curvilinear grids.Int. J. Numer. Methods Fluids 21: 645–651.CrossRefGoogle Scholar
  12. Sun, Y. L., Chen, S. J., Zhao, K. S., 1990. A three-dimensional barolinic model of coastal water. I. Numerical simulation of tidal model and residual currents in the Bohai Sea.J. Ocean Univ. Qingdao. 20(3): 145–158.Google Scholar
  13. Thompson, Jeo. F., Frank, C., Thames, C., et al., 1974. Automatic numerical generation of body-fitted curvilinear systems for field containing any number of arbitrary two-dimensional bodies.J. Comput. Phys. 15: 229–319.CrossRefGoogle Scholar
  14. Xie, L., Hsieh, W. W., Helbig, J. A., 1990. A tidal model of the Bohai Sea.Cont. shelf Res. 10(8): 707–721.CrossRefGoogle Scholar

Copyright information

© Science Press 1999

Authors and Affiliations

  • Bao Xian-wen
    • 1
  • Sun Wen-xin
    • 1
  • Shi Feng-yan
    • 2
  1. 1.College of Marine EnvironmentOcean University of QingdaoQingdaoChina
  2. 2.East China Normal UniversityShanghaiChina

Personalised recommendations