Advertisement

An analysis of MONTBLEX data on heat and momentum flux at Jodhpur

  • Kusuma G. Rao
  • R. Narasimha
  • A. Prabhu
Article
  • 19 Downloads

Abstract

Parameterization of sensible heat and momentum fluxes as inferred from an analysis of tower observations archived during MONTBLEX-90 at Jodhpur is proposed, both in terms of standard exchange coefficientsC H andC D respectively and also according to free convection scaling. Both coefficients increase rapidly at low winds (the latter more strongly) and with increasing instability. All the sensible heat flux data at Jodhpur (wind speed at 10 m Ū10 < 8 ms−1) also obey free convection scaling, with the flux proportional to the ‘4/3’ power of an appropriate temperature difference such as that between 1 and 30 m. Furthermore, for Ū10 < 4 ms−1 the momentum flux displays a linear dependence on wind speed.

Keywords

Sensible heat flux momentum flux free convection exchange coefficient of heat drag coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beljaars A C M 1994 The parameterization of surface flux in large scale models under free convection;Q. J. R. Meteorol. Soc. 121 255–270CrossRefGoogle Scholar
  2. Beljaars A C M and Miller M J 1990 The sensitivity of the ECMWF model to the parameterization of evaporation from the tropical oceans;ECMWF technical memorandum no 170Google Scholar
  3. Bradley E F, Coppin P A and Godfrey J S 1991 Measurements of sensible and latent heat flux in the western equatorial Pacific Ocean;J. Geophys. Res. (Suppl.)96 3375–3389Google Scholar
  4. Businger J A 1988 A note on the Businger-Dyer profiles;Boundary-Layer Meteorol. 42 145–151CrossRefGoogle Scholar
  5. Businger J A, Wyngaard J C, Izumi Y and Bradley E F 1971 Flux-profile relationship in the atmospheric surface layer;J. Atmos. Sci. 28 181–189CrossRefGoogle Scholar
  6. Deardorff J W 1972 Parameterization of the planetary boundary layer for use in general circulation models;Mon. Weather Rev. 2 93–106CrossRefGoogle Scholar
  7. Deardorff J W and Willis G E 1985 Further results from a laboratory model of the convective planetary boundary layer;Boundary-Layer Meteorol. 32 205–236CrossRefGoogle Scholar
  8. Goel M and Srivastava H N 1990 Monsoon Trough Boundary Layer Experiment (MONTBLEX);Bull. Am. Meteorol. Soc. 71 1594–1600CrossRefGoogle Scholar
  9. Kusuma G Rao 1996 Roughness length and drag coefficient at two MONTBLEX-90 tower stations;Proc. Indian Acad. Sci. (Earth Planet. Sci.)105 273–287Google Scholar
  10. Kusuma G Rao, Narasimha R and Prabhu A 1996 Estimation of drag coefficient at low wind speeds over the monsoon trough land region during MONTBLEX-90;Geophys. Res. Lett. (in press)Google Scholar
  11. Kusuma G Rao, Sethu Raman, Prabhu A and Narasimha R 1995 Surface turbulent heat flux variation over the monsoon trough region during MONTBLEX-90;Atmos. Environ. 29 2113–2129CrossRefGoogle Scholar
  12. Large W G and Pond S 1982 Sensible and latent heat flux measurements over the ocean;J. Phys. Oceanogr. 12 464–482CrossRefGoogle Scholar
  13. Miller M J, Beljaars A C M and Palmer T N 1992 The sensitivity of the ECMWF model to the parameterization of evaporation from the tropical oceans;J. Climate 5 418–434CrossRefGoogle Scholar
  14. Mohanty U C, Parihar P S, Venugopal T and Parashuram 1995 Estimation of the drag coefficient over the western desert sector of the Indian summer monsoon trough;104 273–287Google Scholar
  15. Monin A S and Yaglom A M 1975Statistical hydrodynamics. (Cambridge, MA: MIT Press)Google Scholar
  16. Prandtl L 1932 Meteorologische Anwendung der Stromungslehre;Beitr Phys. für Atmosph. 19 188–202Google Scholar
  17. Priestley C H B 1954 Convection from a large horizontal surface;Australian J. Phys. 7 176–201Google Scholar
  18. Rao K Narahari 1995 Estimation of surface temperature from MONTBLEX-data;Proc. Indian Acad. Sci. (Earth Planet. Sci.)104 257–271Google Scholar
  19. Rudra Kumar S, Ameenulla S and Prabhu A 1995 MONTBLEX tower observation: Instrumentation, data acquisition and data quality;Proc. Indian Acad. Sci. (Earth Planet. Sci.)104 221–248Google Scholar
  20. Schumann U 1988 Minimum friction velocity and heat transfer in the rough surface layer of a convective boundary layer;Boundary-Layer Meteorology 44 311–326CrossRefGoogle Scholar
  21. Sikka D R and Narasimha R 1995 Genesis of the monsoon trough boundary layer experiment (MONTBLEX);Proc. Indian Acad. Sci. (Earth Planet. Sci.)104 157–187Google Scholar
  22. Srivastav S K 1995 Synoptic meteorological observations and weather conditions during MONTBLEX-90;Proc. Indian Acad. Sci. (Earth Planet. Sci.)104 189–220Google Scholar
  23. Stull R B 1988 An introduction to boundary layer meteorology (Dordrecht, The Netherlands: Kluwer Academic Publishers)Google Scholar
  24. Stull R B 1994 A convective transport theory for surface fluxes;J. Atmos. Sci. 51 3–22CrossRefGoogle Scholar
  25. Tennekes H 1973 Similarity laws and scale relations in planetary boundary layers. In:Workshop on micrometeorology (ed.) D A Hangen (American Met. Soc.) 177–216Google Scholar
  26. Townsend A A 1964 Natural convection on water over an ice surface;Q. J. R. Meteorol. Soc. 90 248–259CrossRefGoogle Scholar
  27. Yaglom A M 1977 Comments on wind and temperature flux-profile relationship;Boundary-Layer Meteorol. 11 89–102CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1996

Authors and Affiliations

  • Kusuma G. Rao
    • 1
  • R. Narasimha
    • 1
  • A. Prabhu
    • 2
  1. 1.Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  2. 2.Centre for Atmospheric SciencesIndian Institute of ScienceBangaloreIndia

Personalised recommendations