Advertisement

Sixty year10Be record from Greenland and Antarctica

  • A. Aldahan
  • G. Possnert
  • S. J. Johnsen
  • H. B. Clausen
  • E. Isaksson
  • W. Karlen
  • M. Hansson
Article
  • 55 Downloads

Abstract

We report in this study the distribution of10Be in the top 40 m of the Renland ice core (East Greenland) and in a 30 m long core from DML (Dronning Maud Land, Antarctica) for the period 1931–1988. The two sites show differences in10Be content, the Antarctica site showing smaller variance and a lower average10Be annual flux. Similarly, the average accumulation rate (cm water equivalent year−1) is higher in the Renland relative to DML. The variability in accumulation (precipitation) rates seems to explain part of the difference in10Be flux between the two polar sites. Cyclic fluctuations of10Be flux correlate with the 11-year sunspot number and cosmic ray intensity than with the aa index (perturbation of the geomagnetic activity by the solar wind). Our data corroborate10Be cyclic fluctuation pattern from the Dye 3 ice core and confirm a promising potential for correlation of global and local events.

Keywords

Antarctica Be-10 Greenland ice solar activity climate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldahan A and Possnert G 1993a Some analytical potential of the accelerator mass spectrometer at Uppsala University; 1st Internat. Symp. Applied Isotope Geochemistry, Geiranger, Norway (abstract)Google Scholar
  2. Aldahan A and Possnert G 1993b10Be measurements with the Uppsala tandem accelerator and some geological applications; 1st Internat. Symp. Applied Isotope Geochemistry, Geiranger, Norway (abstract)Google Scholar
  3. Aldahan A, Possnert G, Johnsen S J, Clausen H B, Isaksson E and Karlen W 199510Be and the 11-year solar cycle in ice records covering last 60 years;Annales Geophysicae, supp. 13 422 (abstract)Google Scholar
  4. Beer J, Blinov A, Bonani G, Finkel R C, Hofmann H J, Lehmann B, Oeschger H, Sigg A, Schwander J, Staffelbach T, Stauffer B, Suter M and Wölfli W 1990 Use of10Be in polar ice to trace the 11-years cycle of the solar activity;Nature 347 164–166CrossRefGoogle Scholar
  5. Chambers J M 1993Graphical methods for data analysis; (California; Wadsworth and Brooks)Google Scholar
  6. Currie R 1987 Examples and implications of 18.6 and 11-year terms in world weather records; In Climate: history, periodicity and predictability (eds) M R Rampino, W S Newman, J E Sanders and L K Konigsson (New York; Van Nostrand, Reinhold) pp. 379–403Google Scholar
  7. Currie R 1994 Variance contribution to luni-solar and solar cycle signals in the St Lawrence and Nile river records;Internat. J. Climatology 14 843–852CrossRefGoogle Scholar
  8. Isaksson E, Karlén W, Gundestrup N, Mayewski P, Whitlow S and Twickler M 1996 A century of accumulation and temperature change in Dronning Maud Land, Antarctica;J. Geophys. Res. 101 (D3) 7085–7094CrossRefGoogle Scholar
  9. Johnsen S J, Clausen H B, Dansgaard W, Gundestrup N S, Hansson M, Jonsson P, Steffensen J P and Sveinbjornsdottir E A 1992 A deep ice core from East Greenland;Meddelelser om Gronland, Geosciences 29 1–22Google Scholar
  10. Lal D and Peters B 1967 Cosmic ray produced radioactivity on the earth: InHandbuch der physik 46 (Berlin; Springer-Verlag) pp. 551–612Google Scholar
  11. Lal D 198710Be in polar ice: data reflect changes in cosmic ray flux or polar meteorology;Geophys. Res. Lett. 14 785–788CrossRefGoogle Scholar
  12. Lal D 1992 Expected secular variation in the global terrestrial production rate of radiocarbon; InThe last deglaciation: absolute and Radiocarbon Chronologies, (eds) E Bard and W S Broecker (Berlin; Springer-Verlag) pp. 113–125Google Scholar
  13. Lal D and Jull A J T 1992 Cosmogenic nuclides in ice sheets;Radiocarbon 34 227–233Google Scholar
  14. Monaghan M, Krishnaswami S and Turkian K K 1986 The global-average production rate of10Be;Earth Planet. Sci. Lett. 76 279–287CrossRefGoogle Scholar
  15. Royer T C 1993 High latitude oceanic variability associated with the 18.6-year luni-solar tide;J. Geophys. Res. 98 4639–4644CrossRefGoogle Scholar
  16. Seleshi Y, Demaree G R and Delleur J W 1994 Sunspot numbers as a possible indicator of annual rainfall at Addis Ababa, Ethiopia;Internat. J. Climatology 14 911–923CrossRefGoogle Scholar
  17. Solar-geophysical data reports 1994 Editor (Coffey E H) National Oceanic and Atmospheric Administration, Boulder, ColoradoGoogle Scholar
  18. Steig E J, Polissar P J, Stuiver M, Groots P M and Finkel R C 1996 Large amplitude solar modulation cycles of10Be in Antarctica: implication for atmospheric mixing processes and interpretation of the ice core record;Geophys. Res. Lett. 23 523–5266CrossRefGoogle Scholar
  19. Stuiver M and Braziunas T F 1993 Sun, ocean, climate and atmosphere10CO2 an evaluation of causal and spectral relationship;The Holocene 34 289–305CrossRefGoogle Scholar
  20. Stuiver M, Grootes P M and Braziunas T F 1995 The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes;Quat. Res. 44 341–354CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1998

Authors and Affiliations

  • A. Aldahan
    • 1
    • 2
  • G. Possnert
    • 2
  • S. J. Johnsen
    • 3
    • 4
  • H. B. Clausen
    • 3
    • 4
  • E. Isaksson
    • 5
  • W. Karlen
    • 6
  • M. Hansson
    • 7
  1. 1.Institute of Earth SciencesUppsala UniversityUppsalaSweden
  2. 2.Tandem LaboratoryUppsala UniversityUppsalaSweden
  3. 3.Geophysical InstituteUniversity of CopenhagenCopenhagenDenmark
  4. 4.Science InstituteUniversity of IcelandReykjavikIceland
  5. 5.Norwegian Polar InstituteOsloNorway
  6. 6.Department of Physical GeographyStockholm UniversityStockholmSweden
  7. 7.Department of MeteorologyStockholm UniversityStockholmSweden

Personalised recommendations