, Volume 10, Issue 11, pp 55–69 | Cite as

Bethe’s contributions to solid state theory: A tribute

  • H. R. Krishnamurthy
General Article


This article attempts to acquaint the reader with the seminal contributions made by Hans Albrecht Bethe to the area of solid state theory. It should be read in conjunction with the other tributes to Bethe’s work that appeared in the October 2005 issue ofResonance.


Crystal field theory Bethe’s Ansatz Bethe-Peierls method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

  1. [1]
    H A Bethe, Theory of Diffraction of Electrons by Crystals,Ann. Physik, Vol. 87, pp. 55–129, 1928.CrossRefGoogle Scholar
  2. [2]
    H A Bethe, Splitting of terms in Crystals,Ann. Physik, Vol. 3, pp. 133–208, 1929.CrossRefGoogle Scholar
  3. [3]
    e.g. seeSelected Works of H A Bethe, World Scientific, Vol.18, 1997, series in 20th Century Physics.Google Scholar
  4. [4]
    e.g. see M Tinkham,Group Theory and Quantum Mechanics, McGraw-Hill, 1964.Google Scholar
  5. [5]
    e.g. see J C Slater,Quantum Theory of Atomic Structure, Vols I and II, McGraw-Hill, 1960.Google Scholar
  6. [6]
    e.g. see N Ashcroft and N D Mermin, SolidState Physics, Holt, Rinehart and Winston, 1976.Google Scholar
  7. [7]
    e.g. see A Abragam and B Bleany,Electron Paramagnetic Resonance of Transition Ions, Clarendon press, Oxford 1970.Google Scholar
  8. [8]
    e.g. see M B Salamon and M Jaime,Rev. Mod. Phys., Vol. 73, p. 583, 2001 and T V Ramakrishnan, H R Krishnamurthy, S R Hassan and Pai G Venketeswera, inColossalMagnetoresisrive Manganites, ed.T Chatterji, Kluwer Academic Publishers, Dordrecht, Netherlands, Feb. 2004, condmat/0308396, 2003.CrossRefGoogle Scholar
  9. [9]
    H A Bethe, Theory of the passage of fast corpuscular rays through matter,Ann. Physik, Vol. 5, pp325–400, 1930.CrossRefGoogle Scholar
  10. [10]
    E Garfield, Citation Classics. 3. Articles from the Physical Sciences Published in the 1930’s, Current Contents, Vol. 44, p. 5–9, 1976.Google Scholar
  11. [11]
    H A Bethe, On the theory of metals I: Eigenvalues and eigenfunctions of the linear atomic chain,Zeits. Physik Vol. 71, pp. 205–226, 1931.CrossRefGoogle Scholar
  12. [12]
    R J Baxter,Exactly Solved Models of Statistical Mechanics, Academic Press, 1982.Google Scholar
  13. [13]
    H B Thacker,Rev. Mod. Phys., Vol. 53, p. 253, 1982.CrossRefGoogle Scholar
  14. [14]
    B S Shastry, S S Jha and V Singh (eds),Exactly Solved Problems in Condensed Matter and Relativistic Field Theory, Springer Verlag, 1985.Google Scholar
  15. [15]
    VE Korepin, A G Izergin and N M Bogoliubov, QuantumInverse Scattering Method and Corrrelation Functions, Cambridge University Press, 1993.Google Scholar
  16. [16]
    N Andrei, K Furuya and J H Lowenstein,Rev. Mod. Phys. Vol. 55, p. 331, 1983.CrossRefGoogle Scholar
  17. [16]a
    A M Tsvelick and P B Wiegmann,Adv. Phys., Vol. 32, p. 453, 1983.CrossRefGoogle Scholar
  18. [16]b
    N Andrei, Lectures at the Trieste Summer School 1992, condmatt/9408101Google Scholar
  19. [17]
    M Takahashi, Thermodyanamics of One-dimensional Solvable Models, Cambridge University Press, 1999.Google Scholar
  20. [18]
    W L Bragg and E J Williams, Proc.Roy. Soc. London Ser., Vol. A145, p. 699, 1934.CrossRefGoogle Scholar
  21. [19]
    H A Bethe, Statistical Theory of Super-lattices,Proc. Roy. Soc. London Ser., Vol. A150, pp. 552–575, 1935.CrossRefGoogle Scholar
  22. [20]
    R Peierls,Proc. Roy. Soc., Vol. 154, p. 207, 1936.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  1. 1.Centre For Condensed Matter Theory Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations