Advertisement

Folia Geobotanica

, Volume 42, Issue 1, pp 63–76 | Cite as

Morphological and molecular (RAPD) analyses confirm the hybrid origin of the diploid grassCalamagrostis longiseta var.longe-aristata (Gramineae)

  • Kaku SaitouEmail author
  • Tatsuya Fukuda
  • Jun Yokoyama
  • Masayuki Maki
Article

Abstract

To examine the hybrid origin of the diploid grassCalamagrostis longiseta var.longe-aristata, we performed morphometric and genetic analyses of this taxon and its putative parental taxa. The morphometric analyses revealed that, in general,C. longiseta var.longe-aristata is morphologically intermediate betweenC. longiseta var.longiseta andC. fauriei. Previous studies have reported that some hybrids exhibit transgressive characters but others do not; the latter is the case forC. longiseta var.longe-aristata. Their absence may be due to the ecological adaptation to environments intermediate between those inhabited by the putative parental taxa, and therefore the transgressive characters have not been selected. Nevertheless, there is no direct evidence for adaptive value of the characters examined in this study and only a small part of all characters potentially responsible for adaptation was investigated. An alternative hypothesis about the absence of transgressive characters inC. longiseta var.longe-aristata is that it is at an early stage of hybrid speciation. Random amplified polymorphic DNA (RAPD) analyses showed that individuals ofC. longiseta var.longe-aristata were placed in both of the clusters formed by each putative parental taxon. Greater genetic diversity was observed inC. longiseta var.longe-aristata than in its putative parental taxa. All here reported findings support the scenario thatC. longiseta var.longe-aristata is of hybrid origin, having evolved fromC. longiseta var.longiseta andC. fauriei.

Keywords

Alpine plants Genetic diversity Japan Morphometric analysis Poaceae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold M.L. (1997):Natural hybridization and evolution. Oxford University Press, New York.Google Scholar
  2. Black-Samuelsson S. &Anderson S. (1997): Relationship between reaction norm variation and RAPD diversity inVica dumetorum (Fabaceae).Int. J. Pl. Sci. 158: 593–601.CrossRefGoogle Scholar
  3. Bleeker W. (2004): Genetic variation and self-incompatibility within and outside aRorippa hybrid zone (Brassicaceae).Pl. Syst. Evol. 246: 35–44.CrossRefGoogle Scholar
  4. Buerkle C.A., Morris R.J., Asmussen M.A. &Rieseberg L.H. (2000): The likelihood of homoploid hybrid speciation.Heredity 84: 441–451.PubMedCrossRefGoogle Scholar
  5. Campbell D.R. &Waser N.M. (2001): Genotype-by-environment interaction ad the fitness of plant hybrids in the wild.Evolution 55: 669–676.PubMedCrossRefGoogle Scholar
  6. Choler P., Erschbamer A., Tribsch A., Gielly L. &Taberlet P. (2004): Genetic introgression as a potential to widen a species’ niche: insights from alpineCarex curvula.Proc. Natl. Acad. Sci. U.S.A. 101: 171–176.PubMedCrossRefGoogle Scholar
  7. Dawson I.K., Simons A.J., Waugh R. &Powell W. (1995): Diversity and genetic differentiation among subpopulations ofGliricidia sepium revealed by PCR-based assays.Heredity 74: 10–18.PubMedGoogle Scholar
  8. Doyle J.J. &Doyle J.L. (1987): A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochem. Bull. 19: 11–15.Google Scholar
  9. Felsenstein J. (1995):PHYLIP (Phylogeny Inference Package) version 3.573c. Distributed by the author. Department of Genetics, University of Washington, Seattle.Google Scholar
  10. Felsenstein J. (2002):PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genetics, University of Washington, Seattle.Google Scholar
  11. Felsenstein J. (2005):PHYLIP (Phylogeny Inference Package) version 3.65. Distributed by the author. Department of Genetics, University of Washington, Seattle.Google Scholar
  12. Grant V. (1981):Plant speciation. Columbia University Press, New York.Google Scholar
  13. Gustafson D.J., Gibson D.J. &Nickrent D.L. (1999): Random amplified polymorphic DNA variation among remnant big bluestem (Androposon gerardii Vitman) populations from Arkansas’ Grand Prairie.Molec. Ecol. 8: 1693–1701.CrossRefGoogle Scholar
  14. Hegarty M.J. &Hisock S.J. (2005): Hybrid speciation in plants: new insights from molecular studies.New Phytol. 165: 411–423.PubMedCrossRefGoogle Scholar
  15. Hiesey W.M. &Nobs M.A. (1970): Genetic and transplant studies on contrasting species and ecological races of theAchillea millefolium complex.Bot. Gaz. 131: 245–259.CrossRefGoogle Scholar
  16. Iwata H. (2005):PCO ver. 1.0: MS-DOS program for principal coordinate analysis. Distributed by the author. Department of Information Science and Technology, National Agricultural Research Center, Japan.Google Scholar
  17. Kephart S.R., Wyatt R. &Parrella D. (1988): Hybridization in North AmericanAsclepias. I. Morphological evidence.Syst. Bot. 13: 456–473.CrossRefGoogle Scholar
  18. Lewontin R.C. (1973): The apportionment of human diversity.Evol. Biol. 6: 381–398.Google Scholar
  19. Macarthy E.M., Asmussen M.A. &Anderson W.W. (1995): A theoretical assessment of recombinational speciation.Heredity 74: 502–509.Google Scholar
  20. Marhold K., Lihová J., Perný M., Grupe R. &Neuffer B. (2002): Natural hybridization inCardamine (Brassicaceae) in the Pyrenees: evidence from morphological and molecular data.Bot. J. Linn. Soc. 139: 275–294.CrossRefGoogle Scholar
  21. Maki M. &Horie S. (1999): Random amplified polymorphic DNA (RAPD) markers reveal less genetic variation in the endangered plantCerastium fisherianum var.molle than in the widespread conspecificC. fisherianum var.fisherianum (Caryophyllaceae).Molec. Ecol. 8: 145–150.CrossRefGoogle Scholar
  22. Maki M. &Murata J. (2001): Allozyme analysis of the hybrid origin ofArisaema ehimense (Araceae).Heredity 86: 87–93.PubMedCrossRefGoogle Scholar
  23. Maki M., Horie S. &Yokoyama J. (2002): Comparison of genetic diversity between narrowly endemic shrubMenziesia goyozanensis and its wide spread congenerM. pentandra (Ericaceae).Conservation Genet. 3: 421–425.CrossRefGoogle Scholar
  24. Nei M. &Li W.H. (1979): Mathematical model for studying genetic variation in terms of restriction endonucleases.Proc. Natl. Acad. Sci. U.S.A. 76: 5269–5279.PubMedCrossRefGoogle Scholar
  25. Osada T. (1983):Illustrated grasses of Japan. Heibonsha, Tokyo. (in Japanese).Google Scholar
  26. Rieseberg L.H. (1995): The role of hybridization in evolution: old wine in new skins.Amer. J. Bot. 82: 944–953.CrossRefGoogle Scholar
  27. Rieseberg L.H. (1997): Hybrid origins of plant species.Annual Rev. Ecol. Syst. 28: 59–389.CrossRefGoogle Scholar
  28. Rieseberg L.H. &Ellstrand N.C. (1993): What can molecular and morphological markers tells us about plant hybridization?Crit. Rev. Pl. Sci. 12: 213–241.CrossRefGoogle Scholar
  29. Rieseberg L.H., Archer M.A. &Wayne R.K. (1999): Transgressive segregation, adaptation and speciation.Heredity 83: 363–372.PubMedCrossRefGoogle Scholar
  30. Schwarzbach A.E., Donovan L.A. &Rieseberg L.H. (2001): Transgressive character expression in a hybrid sunflower species.Amer. J. Bot. 88: 270–277.CrossRefGoogle Scholar
  31. Steen N.W., Elven R. &Nordal I. (2004): Hybrid origin of the arctic ×Pucciphippsia vacillans (Poaceae): evidence from Svalbard plants.Pl. Syst. Evol. 245: 215–238.CrossRefGoogle Scholar
  32. Tateoka T. (1976): Chromosome numbers of the genusCalamagrostis in Japan.Bot. Mag. (Tokyo) 89: 99–114.CrossRefGoogle Scholar
  33. Tateoka T. (1978): Natural hybridization in JapaneseCalamagrostis III. The origin and present status ofCalamagrostis longiseta var.longe-aristata.Bot. Mag. (Tokyo) 91: 141–171.CrossRefGoogle Scholar
  34. Wang X.-R., Szmidt A.E., Lewandowski A. &Wang Z.-R. (1990): Evolutionary analysis ofPinus densata Masters, a putative tertiary hybrid. 1. Allozyme variation.Theor. Appl. Genet. 80: 635–640.Google Scholar
  35. Williams J.G.K., Kubelik A.R., Raflaski J.A. &Tingey S.V. (1990): DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucl. Acids Res. 18: 6531–6535.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Botany 2007

Authors and Affiliations

  • Kaku Saitou
    • 1
    Email author
  • Tatsuya Fukuda
    • 2
  • Jun Yokoyama
    • 2
  • Masayuki Maki
    • 2
  1. 1.Biological Institute, Graduate School of ScienceTohoku UniversityAoba, SendaiJapan
  2. 2.Division of Ecology and Evolutionary Biology, Graduate School of Life SciencesTohoku UniversityAoba, SendaiJapan

Personalised recommendations