Neurochemical Pathology

, Volume 6, Issue 1–2, pp 145–166 | Cite as

Synaptic transmission in ammonia intoxication

  • W. Raabe


Ammonia intoxication allegedly plays a significant role in the pathophysiology of hepatic encephalopathy. In order to understand the pathogenesis of this encephalopathy it is necessary to know the effects of ammonia on the mechanisms by which neurons communicate, i.e., excitatory and inhibitory synaptic transmissions.

NH4+ decreases excitatory synaptic transmission mediated by glutamate. Possibly, this effect is related to a depletion of glutamate in presynaptic terminals. NH4+ decreases inhibitory synaptic transmission mediated by hyperpolarizing Cl-dependent inhibitory postsynaptic potentials. This effect is related to the inactivation of the extrusion of Cl from neurons by NH4+. By the very same action, NH4+ also decreases the hyperpolarizing action of Ca2+-and voltage-dependent Cl currents. These currents may modify the efficacy of the synaptic input to neurons and increase neuronal excitability.

Estimates derived from experimental observations suggest that an increase of CNS tissue NH4+ to 0.5 μmol/g is sufficient to disturb excitatory and inhibitory synaptic transmission and to initiate the encephalopathy related to acute ammonia intoxication.

Chronic portasystemic shunting of blood, as in hepatic encephalopathy, significantly changes the relation between CNS NH4+ and function of synaptic transmission. A portacaval shunt increases the tissue NH4+ necessary to disturb synaptic transmission. However, after a portasystemic shunt, synaptic transmission becomes extremely sensitive to any acute increase of NH4+ in the CNS.

Index Entries

Hepatic Encephalopathy ammonia encephalopathy synaptic excitation synaptic inhibition Cl currents portacaval shunt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aickin C., Deisz R. A., and Lux H. D. (1982) Ammonium action on post-synaptic inhibition in crayfish neurones: Implication for the mechanism of chloride extrusion.J. Physiol. 329, 319–339.PubMedGoogle Scholar
  2. Alger B. E. and Nicoll R. A. (1983) Ammonia does not selectively block IPSPs in rat hippocampal pyramidal cells.J. Neurophysiol. 49, 1381–1391.PubMedGoogle Scholar
  3. Allen G. I., Eccles J. C., Nicoll R. A., Oshima T., and Rubia F. J. (1977) The ionic mechanisms concerned in generating the of hippocampal pyramidall cells.Proc. R. Soc. London, B 198, 363–384.Google Scholar
  4. Andersen P. and Andersson S. A. (1968)Physiological Basis of the Alpha Rhythm. Appleton-Century-Crofts, New York, NY.Google Scholar
  5. Andersen P. and Sears T. A. (1964) The role of inhibition in the phasing of spontaneous thalamo-cortical discharge.J. Physiol. (Lond.)173, 459–480.Google Scholar
  6. Benjamin A. M. (1981) Control of glutaminase activity in rat brain cortex in vitro: Influence of glutamate, phosphate, ammonium, calcium and hydrogen ions.Brain Res. 208, 363–377.PubMedCrossRefGoogle Scholar
  7. Binstock L. and Lecar H. (1969) Ammonium ion currents in the squid giant axon.J. Gen. Physiol. 53, 342–361.PubMedCrossRefGoogle Scholar
  8. Bradford H. F. and Ward H. K. (1976) On glutaminase activity in mammalian synaptosomes.Brain Res. 110, 115–125.PubMedCrossRefGoogle Scholar
  9. Brooks C. McC. and Eccles J. C. (1947) Electrical investigation of the monosynaptic pathway through the spinal cord.J. Neurophysiol. 10, 251–274.Google Scholar
  10. Clamann H. P., Gillies J. D., Skinner R. D., and Henneman E. (1974) Quantitative measures of output of a motoneuron pool during monosynaptic reflexes.J. Neurophysiol. 37, 1328–1337.PubMedGoogle Scholar
  11. Clarke D. D. (1971) Discussion in Berl S. Cerebral amino acid metabolism in hepatic coma, inExperimental Biology and Medicine, Vol. 4,Neurochemistry of Hepatic Coma (Polli E., ed.) pp. 71–84. S. Karger, Basel, Switzerland.Google Scholar
  12. Conn H. O. and Lieberthal M. (1978)Hepatic Coma Syndromes and Lactulose. Williams and Wilkins, Baltimore, MD.Google Scholar
  13. Cooper A. J. L., McDonald J. M., Gelbard A. S., Gledhill R. F., and Duffy T. E. (1979) The metabolic fate of13N-labeled ammonia in rat brain.J. Biol. Chem. 254, 4982–4992.PubMedGoogle Scholar
  14. Cooper A. J. L., Mora S. N., Cruz N. F., and Gelbard A. S. (1985) Cerebral ammonia metabolism in hyperammonemic rats.J. Neurochem. 44, 1716–1723.PubMedCrossRefGoogle Scholar
  15. Corradetti R., Moneti G., Moroni F., Pepeu G., and Wieraszko A. (1983) Electrical stimulation of the stratum radiatum increases the release and neosynthesis of aspartate, glutamate and gamma-aminobutyric acid in rat hippocampal slices.J. Neurochem. 41, 1518–1525.PubMedCrossRefGoogle Scholar
  16. Creutzfeldt O. D., Lux H. D., and Watanabe S. (1966a) Electrophysiology of cortical nerve cells, inThe Thalamus (Purpura D. P. and Yahr M. D., eds.) pp. 209–235. Columbia University, New York, NY.Google Scholar
  17. Creutzfeldt O. D., Watanabe S., and Lux H. D. (1966b) Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation.Electroenceph. Clin. Neurophysiol. 20, 1–18.PubMedCrossRefGoogle Scholar
  18. Creutzfeldt O. D., Watanabe S., and Lux H. D. (1966c) Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity.Electroenceph. Clin. Neurophysiol. 20, 19–37.PubMedCrossRefGoogle Scholar
  19. Cruz N. F. and Duffy T. E. (1983) Local cerebral glucose metabolism in rats with chronic portacaval shunts.J. Cereb. Blood Flow Metab. 3, 311–320.PubMedGoogle Scholar
  20. Curtis D. R. and Johnston G. A. R. (1974) Amino acid transmitters in the mammalian central nervous system.Rev. Physiol. 69, 97–188.Google Scholar
  21. Deschenes M., Paradis M., Roy J. P., and Steriade M. (1984) Electrophysiology of lateral thalamic nuclei in cat: Resting properties and burst discharges.J. Neurophysiol. 51, 1196–1219.PubMedGoogle Scholar
  22. Duffy T. E. and Plum F. (1982) Hepatic encephalopathy, inThe Liver: Biology and Pathobiology (Arias I., Popper H., Schachter D., and Schachter D. A., eds.) pp. 693–715. Raven, New York, NY.Google Scholar
  23. Duffy T. E., Plum F., and Cooper A. J. L. (1983) Cerebral ammonia metabolism in vivo, inGlutamine, Glutamate and GABA (Hertz L., Kvamme E., McGeer E. G., and Schousboe A., eds.) pp. 371–388. Alan R. Liss, New York, NY.Google Scholar
  24. Eccles J. C. (1946) Synaptic potentials of motoneurons.J. Neurophysiol. 9, 87–120.Google Scholar
  25. Eccles J. C. (1964)The Physiology of Synapses. Springer, Berlin.Google Scholar
  26. Eccles J., Eccles R. M., and Ito M. (1964) Effects produced on inhibitory postsynaptic potential by the coupled injection of cations and anions into motoneurons.Proc. Royal Soc. London (B) 160, 197–210.CrossRefGoogle Scholar
  27. Ehrlich M., Plum F. and Duffy T. E. (1980) Blood and brain ammonia concentrations after portacaval anastomosis. Effects of acute ammonia.J. Neurochem. 34, 1538–1542.PubMedCrossRefGoogle Scholar
  28. Ferenci P., Pappas S. C., Munson P. J., and Jones E. A. (1984) Changes in glutamate receptors on synaptic membranes associated with hepatic encephalopathy or hyperammonemia in the rabbit.Hepatology 4, 25–29.PubMedGoogle Scholar
  29. Fonnum F. (1984) Glutamate: A neurotransmitter in mammalian brain.J. Neurochem. 42, 1–11.PubMedCrossRefGoogle Scholar
  30. Gallego A. and Lorente de No R. (1947) On the effect of several monovalent ions upon frog nerve.J. Cell. Comp. Physiol. 29, 189–206.CrossRefGoogle Scholar
  31. Gjedde A., Lockwood A. H., Duffy T. E., and Plum F. (1978) Cerebral blood flow and metabolism in chronically hyperammonemic rats.Ann. Neurol. 83, 325–330.CrossRefGoogle Scholar
  32. Hamberger A., Hedquist B., and Nyström B (1979) Ammonium ion inhibition of evoked release of endogenous glutamate from hippocampal slices.J. Neurochem. 33 1295–1302.PubMedCrossRefGoogle Scholar
  33. Hamberger A., Hedquist B., Lundborg H., and Nyström B. (1980) Hippocampal glutamate release after porta cava anastomosis.J. Neurosci. Res. 5, 313–322.PubMedCrossRefGoogle Scholar
  34. Hamberger A., Jacobsson I., Molin S.-O., Nyström B., and Sandberg M. (1981) Regulation of glutamate biosynthesis and release by pathophysiological levels of ammonium ions, inGlutamate as a Neurotransmitter (DiChiara G. and Gessa G. L., eds.) pp. 115–126. Raven, New York, NY.Google Scholar
  35. Hindfelt B. (1975) On mechanisms in hyperammonemic coma with particular reference to hepatic encephalopathy.Ann. NY Acad. Sci. 252, 116–123.PubMedCrossRefGoogle Scholar
  36. Hindfelt B., Plum F., and Duffy T. E. (1977) Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts.J. Clin. Invest. 59, 386–396.PubMedGoogle Scholar
  37. Holm E., Striebel J. P., Muenzenmaier R., and Kattermann R. (1977) Pathogenese der hepatischen Enzephalopathie.Leber Magen Darm 7, 241–254.PubMedGoogle Scholar
  38. Hoyumpa A. M. and Schenker S. (1982) Perspectives in hepatic encephalopathy.J. Lab. Clin. Med. 100, 477–487.PubMedGoogle Scholar
  39. Hubbard J. L., Llinas R., and Quastel D. J. M. (1969)Electrophysiological Analysis of Synaptic Transmission. London, Arnold.Google Scholar
  40. Humphrey D. R. (1968) Re-analysis of the antidromic cortical response. Part 2. The contribution of cell discharge and PSPs to the evoked potentials.Electroenceph. Clin. Neurophysiol. 25, 421–442.PubMedCrossRefGoogle Scholar
  41. Iles J. F. and Jack J. J. B. (1980) Ammonia: assessment of its action on postsynaptic inhibition as a cause of convulsions.Brain 103, 555–578.PubMedCrossRefGoogle Scholar
  42. Katz B. (1969)The Release of Neural Transmitter Substances. Thomas, Springfield, IL.Google Scholar
  43. Lin S. and Raabe W. (1985) Ammonia intoxication: Effects on cerebral cortex and spinal cord.J. Neurochem. 44, 1252–1258.PubMedCrossRefGoogle Scholar
  44. Llinas R., Baker R., and Precht W. (1974) Blockage of inhibition by ammonium acetate action on chloride pump in cat trochlear motoneurons.J. Neurophysiol. 37, 522–533.PubMedGoogle Scholar
  45. Lux H. D. (1971) Ammonium and chloride extrusion: Hyperpolarizing synaptic inhibition in, spinal motoneurons.Science 173, 555–557.PubMedCrossRefGoogle Scholar
  46. Lux H. D., Loracher C., and Neher E. (1970) The action of ammonium on postsynaptic inhibition in spinal motoneurons.Exp. Brain Res. 11, 431–447.PubMedCrossRefGoogle Scholar
  47. Matheson D. F. and van den Berg C. J. (1975) Ammonia and brain glutamine: Inhibition of glutamine degradation by ammonia.Biochem. Soc. Trans. 3, 525–528.PubMedGoogle Scholar
  48. Martinez-Hernandez A., Bell K. P., and Norenberg M. D. (1977) Glutamine synthetase: Glial localization in brain.Science 195, 1356–1358.PubMedCrossRefGoogle Scholar
  49. Mena E. E. and Cotman C. (1985) Pathologic concentrations of ammonium ions blockl-glutamate uptake.Exp. Neurol. 89, 259–263.PubMedCrossRefGoogle Scholar
  50. Nicoll R. A. (1978) The blockade of GABA mediated responses in the frog spinal cord by ammonium ions and furosemide.J. Physiol. 283, 121–132.PubMedGoogle Scholar
  51. Owen D. G., Segal M., and Barker J. L. (1984) A Ca-dependent Cl conductance in cultured mouse spinal neurones.Nature 311, 567–570.PubMedCrossRefGoogle Scholar
  52. Owen D. G., Segal M., and Barker J. L. (1984) Voltage-clamp analysis of a Ca++− and voltage-dependent conductance in cultured mouse spinal neurons.J. Neurophysiol. 55, 1115–1135.Google Scholar
  53. Phear E. A., Sherlock S., and Summerskill W. A. H. (1995) Blood-ammonium levels in liver disease and “hepatic coma”.Lancet i, 836–840.Google Scholar
  54. Purpura D. P. and Cohen B. (1962) Intracellular recording from thalamic neurons during recruiting responses.J. Neurophysiol. 25, 621–635.PubMedGoogle Scholar
  55. Raabe W. (1981) Ammonia and disinhibition in cat motor cortex by ammonium acetate, monofluoroacetate and insulin-induced hypoglycemia.Brain Res. 210, 311–322.PubMedCrossRefGoogle Scholar
  56. Raabe W. (1987) The H-reflex in the encephalopathy due to ammonia intoxication.Exp. Neuro., in press.Google Scholar
  57. Raabe W. and Gumnit R. J. (1975) Disinhibition in cat motor cortex by ammonia.J. Neurophysiol. 38, 347–355.PubMedGoogle Scholar
  58. Raabe W. and Lin S. (1983) Ammonia intoxication and hyperpolarizing inhibition.Exp. Neurol. 82, 711–715.PubMedCrossRefGoogle Scholar
  59. Raabe W. and Lin S. (1984) Ammonia, postsynaptic inhibition and CNS energy stae.Brain Res. 303, 67–76.PubMedCrossRefGoogle Scholar
  60. Raabe W. and Lin S. (1985) Pathophysiology of ammonia intoxication.Exp. Neurol. 87, 519–532.PubMedCrossRefGoogle Scholar
  61. Raabe W. and Onstad G. (1982) Ammonia and methionine sulfoximine intoxication.Brain Res. 242, 291–298.PubMedCrossRefGoogle Scholar
  62. Raabe W. and Onstad G. (1985) Porta-caval shunting changes neuronal sensitivity to ammonia.J. Neurol. Sci. 71, 307–314.PubMedCrossRefGoogle Scholar
  63. Schenker S., McCandless D. W., Brophy E., and Lewis M. S. (1967) Studies on the intracerebral toxicity of ammonia.J. Clin. Invest. 46, 838–848.PubMedGoogle Scholar
  64. Schwartzkroin P. A. and Andersen P. (1975) Glutamic acid sensitivity of dendrites in hippocampal slices in vitro.Adv. Neurol. 12, 45–51.PubMedGoogle Scholar
  65. Shank P. and Campbell G. L. (1983) Glutamate, inHandbook of Neurochemistry, vol. 3,Metabolism of the Nervous System (Lajtha A., ed.) pp. 381–404. Plenum, New York, NY.Google Scholar
  66. Sherlock S. (1985)Diseases of the Liver and Biliary System. pp. 95–107. Blackwell Scientific, Oxford, UK.Google Scholar
  67. Singer W. and Creutzfeldt O. (1974) Unpublished results quoted by Creutzfeldt O. and Houchin J. Neuronal basis of EEG waves, inHandbook of Electroencephalography and Clinical Neurophysiology (Redmond A., ed.) vol. 2, Part C, pp. 2C3–2C55. Elsevier, Amsterdam.Google Scholar
  68. Steriade M. and Deschenes M. (1984) The thalamus as a neuronal oscillator.Brain Res. Rev. 8, 1–63.CrossRefGoogle Scholar
  69. Tapia R. (1983) Gamma-aminobutyric acid: Metabolism and biochemistry of synaptic transmission, inHandbook of Neurochemistry. vol. 3.Metabolism in the Nervous System Lajtha A., ed.) pp. 423–466. Plenum, New York, NY.Google Scholar
  70. Theoret Y. and Boss J.-L. (1985) Effects of ammonium salts on synaptic transmission to hippocampal CA1 and CA3 pyramidal cells in vivo.Neuroscience 14, 807–821.PubMedCrossRefGoogle Scholar
  71. Theoret Y., Davies M. F., Esplin B., and Capek R. (1985) Effects of ammonium chloride on synaptic transmission in the rat hippocampal slice.Neuroscience 14, 798–806.PubMedGoogle Scholar
  72. van den Berg D. J., Matheson D. F., Ronda G., Reijnierse G. L. A., Blokhuis G. G. D., Kroon M. C., Clarke D. D., and Garfinkel D. (1975) A model of glutamate metabolism in the brain: A biochemical analysis of a heterogenous structure, inMetabolic Compartimentation and Neurotransmission. (Berl S., Clarke D. D., and Schneider D., eds) pp. 515–543, Plenum, New York, NY.Google Scholar
  73. Zieve L. (1982) Hepatic encephalopathy, inDiseases of the Liver (Schiff L. and Schiff E., eds.) pp 433–460. Lippincott, Philadelphia, PA.Google Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • W. Raabe
    • 1
  1. 1.NeurologyVA Medical Center and University of MinnesotaMinneapolis

Personalised recommendations