Journal of Applied Mathematics and Computing

, Volume 25, Issue 1–2, pp 67–83 | Cite as

Falkner-Skan equation for flow past a moving wedge with suction or injection

Article

Abstract

The characteristics of steady two-dimensional laminar boundary layer flow of a viscous and incompressible fluid past a moving wedge with suction or injection are theoretically investigated. The transformed boundary layer equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of Falkner-Skan power-law parameter (m), suction/injection parameter (f0) and the ratio of free stream velocity to boundary velocity parameter (λ) are discussed in detail. The numerical results for velocity distribution and skin friction coefficient are given for several values of these parameters. Comparisons with the existing results obtained by other researchers under certain conditions are made. The critical values off 0,m and λ are obtained numerically and their significance on the skin friction and velocity profiles is discussed. The numerical evidence would seem to indicate the onset of reverse flow as it has been found by Riley and Weidman in 1989 for the Falkner-Skan equation for flow past an impermeable stretching boundary.

AMS Mathematics Subject Classification

34B16 34B40 

Key words and phrases

Boundary layer dual solutions mass transfer moving wedge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Falkner and S. W. Skan,Some approximate solutions of the boundary-layer equations, Phiols. Mag.12 (1931), 865–896.MATHGoogle Scholar
  2. 2.
    D. R. Hartree,On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer, Proc. Cambridge Phil. Soc.33 (1937), 223–239.MATHGoogle Scholar
  3. 3.
    K. Stewartson,Further solutions of the Falkner-Skan equation, Proc. Cambridge Phil. Soc.50 (1954), 454–465.MATHMathSciNetGoogle Scholar
  4. 4.
    K. K. Chen and P. A. Libby,Boundary layers with small departure from the Falkner-Skan profile, J. Fluid Mech.33 (1968), 273–282.MATHCrossRefGoogle Scholar
  5. 5.
    A. H. Craven and L. A. Peletier,On the uniqueness of solutions of the Falkner-Skan equation, Mathematika19 (1972), 135–138.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    S. P. Hastings,Reversed flow solutions of the Falkner-Skan equation, SIAM J. Appl. Math.22 (1972), 329–334.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    B. Oskam and A. E. P. Veldman,Branching of the Falkner-Skan solutions for λ < 0, J. Engng. Math.16 (1982), 295–308.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    K. R. Rajagopal, A. S. Gupta and T. Y. Nath,A note on the Falkner-Skan flows of a non-Newtonian fluid, Int. J. Non-Linear Mech.18 (1983), 313–320.MATHCrossRefGoogle Scholar
  9. 9.
    E. F. F. Botta, F. J. Hut and A. E. P. Veldman,The role of periodic solutions in the Falkner-Skan problem for λ > 0, J. Engng. Math.20 (1986), 81–93.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Brodie and W. H. H. Banks,Further properties of the Falkner-Skan equation, Acta Mechanica65 (1986), 205–211.CrossRefMathSciNetGoogle Scholar
  11. 11.
    N. S. Asaithambi,A numerical method for the solution of the Falkner-Skan equation, Appl. Math. Comp.81 (1997), 259–264.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Asaithambi,A finite-difference method for the Falkner-Skan equation, Appl. Math. Comp.92 (1998), 135–141.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    R. S. Heeg, D. Dijkstra and P. J. Zandbergen,The stability of Falkner-Skan flows with several inflection points, J. Appl. Math. Phys. (ZAMP)50 (1999), 82–93.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    M. B. Zaturska and W. H. H. Banks,A new solution branch of the Falkner-Skan equation, Acta Mechanica152 (2001), 197–201.MATHCrossRefGoogle Scholar
  15. 15.
    S.D. Harris, D. B. Ingham and I. Pop,Unsteady heat transfer in impulsive Falkner-Skan flows: Constant wall temperature case, Eur. J. Mech. B/Fluids21 (2002), 447–468.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    B. L. Kuo,Application of the differential transformation method to the solutions of Falkner-Skan wedge flow, Acta Mechanica164 (2003), 161–174.MATHCrossRefGoogle Scholar
  17. 17.
    A. Pantokratoras,The Falkner-Skan flow with constant wall temperature and variable viscosity, Int. J. Thermal Sciences45 (2006) 378–389.CrossRefGoogle Scholar
  18. 18.
    G.C. Yang,On the equation f'"+ff"+λ(1−f2)=0 with λ ≤ -1/2arising in boundary layer theory, J. Appl. Math. & Computing20 (2006), 479–483.MATHGoogle Scholar
  19. 19.
    S. J. Liao,A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate, J. Fluid Mech.385 (1999), 101–128.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    L. Rosenhead,Laminar Boundary Layers, Oxford University Press, Oxford, 1963.MATHGoogle Scholar
  21. 21.
    T. Watanabe,Thermal boundary layers over a wedge with uniform suction or injection in forced flow, Acta Mechanica83 (1990), 119–126.CrossRefGoogle Scholar
  22. 22.
    K. A. Yih,Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux, Acta Mechanica128 (1998), 173–181.MATHCrossRefGoogle Scholar
  23. 23.
    J. C. Y. Koh, and J. P. Hartnett,Skin-friction and heat transfer for incompressible laminar flow over porous wedges with suction and variable wall temperature, Int. J. Heat Mass Transfer2 (1961), 185–198.CrossRefGoogle Scholar
  24. 24.
    W. H. H. Banks,Similarity solutions of the boundary-layer equations for a stretching wall, J. Mec. Theor. Appl.2 (1983), 375–392.MATHMathSciNetGoogle Scholar
  25. 25.
    J. Serrin,Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory, Proc. Roy. Soc. A299 (1967), 491–507.MathSciNetGoogle Scholar
  26. 26.
    N. Riley and P. D. Weidman,Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary, SIAM J. Applied Mathematics49 (1989), 1350–1358.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    J. P. Abraham and E. M. Sparrow,Friction drag resulting from the simultaneous imposed motions of a freestream and its bounding surface, Int. J. Heat Fluid Flow26 (2005), 289–295.CrossRefGoogle Scholar
  28. 28.
    E. M. Sparrow and J. P. Abraham,Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid, Int. J. Heat Mass Transfer48 (2005), 3047–3056.Google Scholar
  29. 29.
    B. C. Sakiadis,Boundary layers on continuous solid surfaces, AIChE. J.,7 (1961), 26–28, see also pp. 221–225 and 467–472.CrossRefGoogle Scholar
  30. 30.
    H. Blasius,Grenzschichten in Flussigkeiten mit kleiner Reibung, Z. Math. Phys.56 (1908), 1–37.Google Scholar
  31. 31.
    E. Magyari and B. Keller,Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, Eur. J. Mech. B-Fluids19 (2000), 109–122.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    H. Schlichting,Boundary Layer Theory, McGraw-Hill, New York, 1979.MATHGoogle Scholar
  33. 33.
    T. Fang,Further study on a moving-wall boundary-layer problem with mass transfer, Acta Mechanica163 (2003), 183–188.MATHCrossRefGoogle Scholar
  34. 34.
    F. M. White,Viscous Fluid Flow, 3rd ed., Mc Graw-Hill, New York, 2006.Google Scholar
  35. 35.
    T. Cebeci and P. Bradshaw,Physical and Computational Aspects of Convective Heat Transfer, Springer, New York, 1988.MATHGoogle Scholar
  36. 36.
    E. M. Sparrow, E. R. Eckert and W. J. Minkowicz,Transpiration cooling in a magneto-hydrodynamic stagnation-point flow, Appl. Sci. Res. A11 (1962), 125–147.Google Scholar

Copyright information

© Korean Society for Computational & Applied Mathematics and Korean SIGCAM 2007

Authors and Affiliations

  1. 1.School of Mathematical Sciences, Faculty of Science and TechnologyNational University of MalaysiaUKM BangiMalaysia
  2. 2.Faculty of MathematicsUniversity of ClujClujRomania

Personalised recommendations