Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution

  • Guy Jumarie


The paper deals with the solution of some fractional partial differential equations obtained by substituting modified Riemann-Liouville derivatives for the customary derivatives. This derivative is introduced to avoid using the so-called Caputo fractional derivative which, at the extreme, says that, if you want to get the first derivative of a function you must before have at hand its second derivative. Firstly, one gives a brief background on the fractional Taylor series of nondifferentiable functions and its consequence on the derivative chain rule. Then one considers linear fractional partial differential equations with constant coefficients, and one shows how, in some instances, one can obtain their solutions on by-passing the use of Fourier transform and/or Laplace transform. Later one develops a Lagrange method via characteristics for some linear fractional differential equations with nonconstant coefficients, and involving fractional derivatives of only one order. The key is the fractional Taylor series of non differentiable functionf(x + h) =E α (h α D x α )f(x).

AMS Mathematics Subject Classification

26A33 49K20 44A10 

Key words and phrases

Fractional PDE Riemann-Liouville derivative fractional Taylor series Mittag-Leffler function Lagrange characteristics Lagrange constant variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Anh and N. N. Leonenko,Scaling laws for fractional diffusion-wave equations with singular initial data, Statistics and Probability Letters48 (2000), 239–252.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    E. Bakai,Fractional Fokker-Planck equation, solutions and applications, Physical review E63 (2001), 1–17.Google Scholar
  3. 3.
    M. Caputo,Linear model of dissipation whose Q is almost frequency dependent II, Geophys. J. R. Ast. Soc.13 (1967), 529–539.Google Scholar
  4. 4.
    L. Decreusefond and A. S. Ustunel,Stochastic analysis of the fractional Brownian motion, Potential Anal.10 (1999), 177–214.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. M. Djrbashian and A. B. Nersesian,Fractional derivative and the Cauchy problem for differential equations of fractional order (in Russian), Izv. Acad. Nauk Armjanskoi SSR,3(1) (1968), 3–29.Google Scholar
  6. 6.
    T. E. Duncan, Y. Hu and B. Pasik-Duncan,Stochastic calculus for fractional Brownian motion, I. Theory, SIAM J. Control Optim.38 (2000), 582–612.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. S. El Naschie,A review of E infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons and Fractals19 (2004), 209–236.zbMATHCrossRefGoogle Scholar
  8. 8.
    A. El-Sayed,Fractional order diffusion-wave equation, Int. J. Theor. Phys.35 (1996), 311–322.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Hanyga,Multidimensional solutions of time-fractional diffusion-wave equations, Proc. R Soc. London, A458 (2002), 933–957.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Y. Hu and B. Øksendal,Fractional white noise calculus and applications to finance, Infinite Dim. Anal. Quantum Probab. Related Topics6 (2003), 1–32.zbMATHCrossRefGoogle Scholar
  11. 11.
    F. Huang and F. Liu,The space-time fractional diffusion equation with Caputo derivatives, J. Appl. Math & Computing19(1–2) (2005), 179–190.zbMATHMathSciNetGoogle Scholar
  12. 12.
    G. Jumarie,A Fokker-Planck equation of fractional order with respect to time, Journal of Math. Physics3310 (1992), 3536–3542.CrossRefMathSciNetGoogle Scholar
  13. 13.
    G. Jumarie,Stochastic differential equations with fractional Brownian motion input, Int. J. Syst. Sc.24(6) (1993), 1113–1132.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    G. Jumarie,Maximum Entropy, Information without Probability and Complex Fractals, 2000, Kluwer (Springer), Dordrecht.zbMATHGoogle Scholar
  15. 15.
    G. Jumarie,Schrödinger equation for quantum-fractal space-time of order n via the complex-valued fractional Brownian motion, Intern. J. of Modern Physics A16(31) (2001), 5061–5084.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    G. Jumarie,Further results on the modelling of complex fractals in finance, scaling ob- servation and optimal portfolio selection, Systems Analysis, Modelling Simulation, 4510 (2002), 1483–1499.MathSciNetGoogle Scholar
  17. 17.
    G. Jumarie,Fractional Brownian motions via random walk in the complex plane and via fractional derivative, Comparison and further results on their Fokker-Planck equations, Chaos, Solitons and Fractals4 (2004), 907–925.CrossRefMathSciNetGoogle Scholar
  18. 18.
    G. Jumarie,On the representation of fractional Brownian motion as an integral with respect to (dt) α, Applied Mathematics Letters18 (2005), 739–748.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    G. Jumarie,On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion, Applied Mathematics Letters18 (2005), 817–826.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    G. Jumarie,Fractional Hamilton-Jacobi equation for the optimal control of non-random fractional dynamics with fractional cost function, J. Appl. Math. & Computing, in press.Google Scholar
  21. 21.
    H. Kober,On fractional integrals and derivatives, Quart. J. Math. Oxford11 (1940), 193–215.CrossRefMathSciNetGoogle Scholar
  22. 22.
    K. M. Kolwankar and A. D. Gangal,Holder exponents of irregular signals and local fractional derivatives, Pramana J. Phys.48 (1997), 49–68.Google Scholar
  23. 23.
    K. M. Kolwankar and A. D. Gangal,Local fractional Fokker-Planck equation, Phys. Rev. Lett.80 (1998), 214–217.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    A. V. Letnivov,Theory of differentiation of fractional order, Math. Sb.3 (1868), 1–7.Google Scholar
  25. 25.
    J. Liouville,Sur le calcul des differentielles á indices quelconques (in french), J. Ecole Polytechnique13 (1832), 71.Google Scholar
  26. 26.
    B. B. Mandelbrot and J. W. van Ness,Fractional Brownian motions, fractional noises and applications, SIAM Rev.10 (1968), 422–437.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    B. B. Mandelbrot and R. Cioczek-Georges,A class of micropuls es and antipersistent fractional Brownian motions, Stochastic Processes and their Applications60 (1995), 1–18.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    B. B. Mandelbrot and R. Cioczek-Georges,Alternative micropulses and fractional Brownian motion. Stochastic Processes and their Applications64 (1996), 143–152.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    E. Nelson,Quantum Fluctuations, 1985, Princeton University Press, Princeton, New Jersey.zbMATHGoogle Scholar
  30. 30.
    L. Nottale,Fractal space-time and microphysics, 1993, World Scientific, Singapore.zbMATHGoogle Scholar
  31. 31.
    L. Nottale,Scale-relativity and quantization of the universe I. Theoretical framework, S. Astronm Astrophys327 (1997), 867–889.Google Scholar
  32. 32.
    L. Nottale,The scale-relativity programme Chaos, Solitons and Fractals10(2-3) (1999), 459–468.zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    G. N. Ord and R. B. Mann,Entwined paths, difference equations and Dirac equations, Phys. Rev A, 2003 (67): 0121XX3.Google Scholar
  34. 34.
    T. J. Osler,Taylor’s series generalized for fractional derivatives and applications, SIAM. J. Mathematical Analysis2(1) (1971), 37–47.zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    N.T. Shawagfeh,Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. and Comp.131 (2002), 517–529.zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    W. Wyss,The fractional Black-Scholes equation, Fract. Calc. Apl. Anal.3(1) (2000) (3), 51–61.zbMATHMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational & Applied Mathematics and Korean SIGCAM 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Quebec at MontrealMontrealCanada

Personalised recommendations