Journal of Clinical Monitoring

, Volume 1, Issue 3, pp 180–192 | Cite as

History of blood gas analysis. I. The development of electrochemistry

  • John W. Severinghaus
  • Paul B. Astrup
Historical Review


In 1982 Poul Astrup, in writing a history of acid base balance and blood gases, invited me to contribute a chapter about the modern period, from 1950 to the present. Astrup’s book is scheduled for publication at the end of 1985 by Radiometer Company of Copenhagen; it will be distributed by Munksgaard (Blackwell). The story of blood gas analysis since 1950 is vast: there are some 420 references to methodology and closely related physiology. This “modern” history will appear in theJournal of Clinical Monitoring as a series of essays. This first essay centers on electrochemistry, the basis of modern blood gas analysis, and accordingly examines its roots in more detail.

The 17th and 18th century exploration of electricity and gas laws led to the development of thermodynamic electrochemistry in 1887 through the collaborative efforts of van’t Hoff. Arrhenius, Ostwald, and Nernst. The importance of the hydrogen ion in biology and in the body’s buffering mechanisms was worked out by Henderson, Van Slyke, Barcroft, and many others in the first quarterof this century. The glass electrode became available after 1925, but practical blood pH measurement was introduced in the 1950s by Astrup and Siggaard Andersen. Succeeding essays will concern micro pH methods and base excess analysis, the discoveries of Stow’s CO2 electrode and Clark’s O2 electrode, the development of oximetry, and related physiology.

Key Words

Acid-base equilibrium: pH methods Measurement techniques: electrodes, pH, carbon dioxide, oxygen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hooke R: An account of an experiment made by M. Hooke of preserving animals alive by blowing through their lungs with bellows. Philos Trans R Soc Lond 1667;28:539Google Scholar
  2. 2.
    Dalton J: On the absorbtion of gases by water and other liquids. Mem Lit Philos Soc Manchester, Ser 2, 1805;1:244–258Google Scholar
  3. 3.
    Henry W: Experiments on the quantity of gases absorbed by water at different temperatures, and under different pressures. Philos Trans R Soc Lond 1803;Pt 93:29–42CrossRefGoogle Scholar
  4. 4.
    Arrhenius SA: Electrolyte dissociation (The Willard Gibbs Address). J Amer Chem Soc 1912;34:353–364CrossRefGoogle Scholar
  5. 5.
    van’tHoffJH: Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und gasen. Z Physik Chemie 1887; 1:481–508Google Scholar
  6. 6.
    Arrhenius SA: über die Dissociation der in Wasser gelösten Stoffe. Z Physik Chemie 1887; 1:631–658Google Scholar
  7. 7.
    Nernst WH: Die elektromotorische Wirksamkeit de Jonen. Z Physik Chemie 1889;4:129–181Google Scholar
  8. 8.
    Bjerrum N: The electrical contact potential and the individual activity of single ions. Acta Chem Scand 1958;12:945–950CrossRefGoogle Scholar
  9. 9.
    SØrensen SPL: Enzymstudien II. Mitteilung über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen. Biochem Z 1909;21:131–304Google Scholar
  10. 10.
    Henderson LJ: The theory of neutrality regulation in the animal organism. Am J Physiol 1908;21:427–448Google Scholar
  11. 11.
    Hasselbalch KA: Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen KohlensÄure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochem Z 1916;78:112–144Google Scholar
  12. 12.
    Warburg EJ: Studies on carbonic acid compounds and hydrogen ion activities in blood and salt solution: A contribution to the theory of the equation of L. J. Henderson and K. A. Hasselbalch. Biochem J 1922;16:153–340PubMedGoogle Scholar
  13. 13.
    BrØnsted JN: Einige Bemerkungen über den Begriff der SÄuren und Basen. RecTrav Chim Pays-Bas 1923;42:718–728Google Scholar
  14. 14.
    Siggaard-Andersen O: The acid-base status of the blood. 4th ed. Copenhagen: Munksgaard, 1974:1–229Google Scholar
  15. 15.
    Cremer M: Uber die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von den polyphasischen Elektrolytketten. Z Biol 1906;47:562Google Scholar
  16. 16.
    Haber F, Klemensiewicz Z: Uber Elektrische Phasengrezkrafte. Z Physik Chemie 1909;67:385Google Scholar
  17. 17.
    Hughes WS: The potential difference between glass and electrolytes in contact with glass. J Am Chem Soc 1922;44:2860–2866CrossRefGoogle Scholar
  18. 18.
    Kerridge PT: The use of the glass electrode in biochemistry. Biochem J 1925;19:611–617PubMedGoogle Scholar
  19. 19.
    MacInnes DA, Dole M: Tests of a new type of glass electrode. Ind Eng Chem Anal Ed 1929; 1:57–59CrossRefGoogle Scholar
  20. 20.
    Dole M: The glass electrode. London: Wiley, 1941:1–325Google Scholar
  21. 21.
    Stadie WC, O’Brien H, Laug PE: Determination of the pH of serum at 38‡ with the glass electrode and an improved electron tube potentiometer. J Biol Chem 1931;91:243–269Google Scholar
  22. 22.
    Dill DB, Daly C, Forbes WH: the pK’ of serum and red cells. J Biol Chem 1937;117:569–579Google Scholar
  23. 23.
    MacInnes DA, Belcher D: A durable glass electrode. Ind Eng Chem Anal Ed 1933;5:199–200CrossRefGoogle Scholar
  24. 24.
    Rosenthal TB: The effect of temperature on the pH of blood and plasma in vitro. J Biol Chem 1948;173:25–30PubMedGoogle Scholar
  25. 25.
    MacInnes DA: The principles of electrochemistry. NewYork: Reinhold, 1939Google Scholar
  26. 26.
    Bates RG: Determination of pH. Theory and practice. 3rd ed. New York: Wiley, 1973:1–435Google Scholar

Copyright information

© Little, Brown and Company, Inc. 1985

Authors and Affiliations

  • John W. Severinghaus
    • 1
  • Paul B. Astrup
    • 2
  1. 1.Department of Anesthesia and the Anesthesia Research CenterUniversity of California Medical CenterSan Francisco
  2. 2.Department of Clinical Chemistry, RigshospitalUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations