Journal of Applied Mathematics and Computing

, Volume 22, Issue 3, pp 225–240

Representation and approximation for generalized inverseAT,S(2): Revisited

Article

Abstract

In this paper an alternative representation of the generalized inverseAT,S(2) of a matrixA is given out, which drops the restriction on the nonnegativity of the spectrum ofGA for parameter matrixG satisfyingR(G) =T andN(G) =S. Based on this new representation and two special Hermitian interpolation polynomials we present two iterative schemes for computing the generalized inverseAT,S(2). The corresponding error bounds are also estimated. Finally, an example is shown to illustrate our theory.

AMS Mathematics Subject Classifications

15A09 15A57 15F48 

Key words and phrases

Generalized inversesAT,S(2) interpolation function iterative methods representation error estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ben-Israel and T. N. E. Greville,Generalized Inverses: Theory and Applications, Wiley, New York 1974; 2nd Edition, Springer Verlag, New York, 2003.MATHGoogle Scholar
  2. 2.
    Wang Guorong, Wei Yimin and Qiao Sanzheng,Generalized Inverses: Theory and Computations, Science Press, Beijing/New York, 2004.Google Scholar
  3. 3.
    M. Z. Nashed and X. Chen,Convergence of Newton-like methods for singular operator equations using outer inverse, Numer. math.66 (1993), 235–257.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. J. Getson and F. C. Hsuan,{2}—inverses and Their Statistical Applications, Lecture notes in statisticals, Springer, berlin, 1988.Google Scholar
  5. 5.
    F. Husen, P. Langenberg and A. J. Getson,The {2}—inverse with applications to statistics, Linear Algebra Appl.70 (1985), 241–248.CrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Z. Nashed (Ed.),Generalized Inverses and Applications, Academic Press, New York, 1976.MATHGoogle Scholar
  7. 7.
    P-å. Wedin,Perturbation results and condition numbers for outer inverses and especially for projections, Technical Report UMINF 124.85, S-901 87, Inst. of Info. Proc. University of Umeå, Umeå, Sweden, 1985.Google Scholar
  8. 8.
    Y. L. Chen,Finite algorithms for the (2)-generalized inverse A T,S(2), Linear and multilinear Algebra40 (1995), 61–68.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Y. L. Chen,Iterative methods for computing the generalized inverse A T,S(2), Appl. Math. Comput.75 (1996), 207–222.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Y. L. Chen and X. Chen,Representation and approximation of the outer inverse A T,S(2) of a matrix A, Linear Algebra Appl.308 (2000), 85–107.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    P. Stanimirovic,Limiting representations of generalized inverses and related methods, Appl. math. Comput.103 (1999), 51–68.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Y. M. Wei,A characterization and representation of the generalized inverse A T,S(2) and its applications, Linear Algebra Appl.280 (1998), 87–96.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Y. M. Wei and G. R. Wang,A survey on the generalized inverse AT,S/(2), in: Proceedings of the meeting on Matrix Analysis and Applications, Spain, 1997, 421–428.Google Scholar
  14. 14.
    Y. M. Wei and H. B. Wu,The representation and approximation for the generalized inverse A T,S(2), Appl. Math. Comput.135 (2003), 263–276.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Y. M. Wei and H. B. Wu,The representation and approximation for Drazin inverse, J. Comput. Appl. Math.126 (2000), 417–432.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Y. M. Wei and H. B. Wu,The represenation and approximation for the weighted Moore-Penrose inverse, Appl. math. Comput.121 (2001), 17–28.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Y. M. Wei and H. B. Wu,T, S spliting methods for computing the generalized inverse AT,S(2), and rectangular system, Intern. J. Computer. Math.77 (2001), 401–424.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    X. Z. Li and M. Wei,A note on computing the generalized inverse A T,S(2) of a matrix A, IJMMS31:8 (2002), 497–507.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Y. M. Wei and S. Z. Qiao,The representation and approximation of the Drazin inverse of a linear operator in Hilbert space, Appl. Math. Comput.138 (2003), 77–89.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Y. M. Wei,The represenation and approximation for the weighted Moore-Penrose inverse in Hilbert space, Appl. Math. Comput.136 (2003), 475–486.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    V. Rakocevic and Y. M. Wei,The representation and approximation of the W—weighted Drazin inverse of linear operators in Hilbert space, Appl. math. Comput.141 (2003), 455–470.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Chongguang Cao and Xian Zhang,The generalized inverse A T,S(GUORONGG WANG2) and its applications, J. Appl. Math. & Computing (old:KJCAM)11 (2003), 155–164.MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    P. S. Stanimirovic and M. B. Tasic,Computing determinantal representation of generalized inverses, J. Appl. Math. & Computing (old:KJCAM)9 (2002), 349–359.MATHMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational & Applied Mathematics and Korean SIGCAM 2006

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsLanzhou UniversityLanzhouP. R. China
  2. 2.Department of MathmaticsShanghai Normal UniversityShanghaiP. R. China

Personalised recommendations