Journal of Applied Mathematics and Computing

, Volume 22, Issue 3, pp 87–99 | Cite as

Implicit difference approximation for the time fractional diffusion equation

  • P. Zhuang
  • F. LiuEmail author


In this paper, we consider a time fractional diffusion equation on a finite domain. The equation is obtained from the standard diffusion equation by replacing the first-order time derivative by a fractional derivative (of order 0 < α < 1 ). We propose a computationally effective implicit difference approximation to solve the time fractional diffusion equation. Stability and convergence of the method are discussed. We prove that the implicit difference approximation (IDA) is unconditionally stable, and the IDA is convergent withO(Τ +h 2), where Τ andh are time and space steps, respectively. Some numerical examples are presented to show the application of the present technique.

AMS Mathematics Subject Classification

65L20 34D15 34K26 

Key words and phrases

Fractional differential equation implicit difference approximation stability convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. P. Agrawal,Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain, J. Nonlinear Dynamics29 (2002), 145–155.zbMATHCrossRefGoogle Scholar
  2. 2.
    V. V. Anh and N. N. Leonenko,Spectral analysis of fractional kinetic equations with random data, J. Stat. Pgys.104 (2001), 1349–1387.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Orsingher, Enzo, Beghin, Luisa,Time-fractional telegraph equations and telegraph processes with Brownian time, Probab. Theory Related Fields128(1) (2004), 141–160.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. J. Fix and J. P. Roop,Least squares finite element solution of a fractional order two-point boundary value problem, Computers Math. Applic.48 (2004), 1017–1033.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. Gorenflo, A. Iskenderov and Yu. Luchko,Maping between solusions of fractional diffusion-wave equations, Fract. Calculus and Appl. Math.3 (2000), 75–86.zbMATHMathSciNetGoogle Scholar
  6. 6.
    R. Gorenflo, Yu. Luchko and F. Mainardi,Wright function as scale-invariant solutions of the diffusion-wave equation, J. Comp. Appl. Math.118 (2000), 175–191.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Gorenflo, F. Mainardi, D. Moretti and P. Paradisi,Time Fractional Diffusion: A Discrete Random Walk Approach [J], Nonlinear Dynamics29 (2002), 129–143.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    F. Huang and F. Liu,The time fractional diffusion and advection-dispersion equation, ANZIAM J.46 (2005), 1–14.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liu, V. Anh, I. Turner,Numerical solution of space fractional Fokker-Planck equation J. Comp. and Appl. Math.166 (2004), 209–219.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    F. Liu, V. Anh, I. Turner and P. Zhuang,Time fractional advection dispersion equation, J. Appl. Math. & Computing13 (2003), 233–245.zbMATHMathSciNetGoogle Scholar
  11. 11.
    F. Liu, V. Anh, I. Turner and P. Zhuang,Numerical simulation for solute transport in fractal porous media, ANZIAM J.45(E) (2004), 461–473.MathSciNetGoogle Scholar
  12. 12.
    F. Liu, S. Shen, V. Anh and I. Turner,Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, ANZIAM J.46(E) (2005), 488–504.MathSciNetGoogle Scholar
  13. 13.
    B. Luisa and O. Enzo,The telegraph processes stopped at stable-distributed times and its connection with the fractional telegraph equation, Fract. Calc. Appl. Anal.6(2) (2003), 187–204.zbMATHMathSciNetGoogle Scholar
  14. 14.
    F. Mainardi,The fundamental solutions for the fractional diffusiona-wave equation, Appl. Math.9(6) (1996), 23–28.zbMATHMathSciNetGoogle Scholar
  15. 15.
    M. Meerschaert and C. Tadjeran,Finite difference approximations for two-sided spacefractional partial differential equations, (2005), to appear.Google Scholar
  16. 16.
    M. Meerschaert and C. Tadjeran,Finite difference approximations for fractional advection-dispersion flow equations, J. Comp. and Appl. Math. (2005), (in press).Google Scholar
  17. 17.
    I. Podlubny,Fractional Differential Equations, Academic Press, 1999.Google Scholar
  18. 18.
    W. R. Schneider and W. Wyss,Fractional diffusion and wave equations, J. Math. Phys.30 (1989), 134–144.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    W. Wyss,The fractional diffusion equation, J. Math. Phys.27 (1986), 2782–2785.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational & Applied Mathematics and Korean SIGCAM 2006

Authors and Affiliations

  1. 1.School of Mathematical ScienceXiamen UniversityXiamenChina
  2. 2.Department of MathematicsXiamen UniversityXiamenChina
  3. 3.School of Mathematical SciencesQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations