Wuhan University Journal of Natural Sciences

, Volume 11, Issue 6, pp 1467–1472 | Cite as

Merkle tree digital signature and trusted computing platform

  • Wang Xiaofei
  • Hong FanEmail author
  • Tang Xueming
  • Cui Guohua
Trusted Software


Lack of efficiency in the initial key generation process is a serious shortcoming of Merkle tree signature scheme with a large number of possible signatures. Based on two kinds of Merkle trees, a new tree type signature scheme is constructed, and it is provably existentially unforgeable under adaptive chosen message attack. By decentralizing the initial key generation process of the original scheme within the signature process, a large Merkle tree with 6. 87×1010 possible signatures can be initialized in 590 milliseconds. Storing some small Merkle trees in hard disk and memory can speed up Merkle tree signature scheme. Mekle tree signature schemes are fit for trusted computing platform in most scenarios.

Key words

digital signature one-time signature Merkle tree trusted computing platform 

CLC number

TP 309 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Merkle R.Secrecy. Authentication, and Public Key Systems [M].Ann Arbor:UMI Research Press, 1982.Google Scholar
  2. [2]
    Merkle R. A Digital Signature Based on a Conventional Encryption Function[C] //Proc. CRYPTO87, Lecture Notes in Computer Science 293. Berlin: Springer-Verlag, 1988: 369–378.Google Scholar
  3. [3]
    Williams D, Sirer E G. Optimal Parameter Selection for Efficient Memory Integrity Verification Using Merkle Hash Trees [C]//Proceedings of the Third IEEE International Symposium on Network Computing and Applications. Los Alamitos: IEEE Computer Society, 2004:383–388.Google Scholar
  4. [4]
    Naor D, Shenhavy A, Woolz A. One-Time Signatures Revisited: Have They Become Practical[EB/OL]. [2005-11-02]. Google Scholar
  5. [5]
    Trusted Computing Group. TCG Specification Architecture Overview, Revisionl. 2 [EB/OL]. [2005-11-02].https://www.trustedcomputinggroup. org/groups/TCG_1_0_Architecture_Overview.pdf. Google Scholar
  6. [6]
    Bicakci K, Tsudik G, Tung B. How to Construct Optimal One-Time Signatures[J].Computer Networks (Elsevier), 2003,43(3):339–349.zbMATHCrossRefGoogle Scholar
  7. [7]
    Bleichenbacher D, Maurer U M. Optimal Tree-Based One Time Digital Signature Schemes [C]//STACS'96 Lecture Notes in Computer Science 1046. Berlin: Springer-Verlag, 1996:363–374.Google Scholar
  8. [8]
    Jakobsson M, Leighton T, Micali S,et al. Fractal Merkle Tree Representation and Traversal [C]//Proceedings of RSA-CT'03, Lecture Notes in Computer Science 2612. Berlin: Springer-Verlag, 2003: 314–326.Google Scholar
  9. [9]
    Boneh D, Mironov I, Shoup V. A Secure Signature Scheme from Bilinear Maps[C] //Proceedings of RSA-CT'03, Lecture Notes in Computer Science 2612. Berlin: Springer-Verlag, 2003:98–110.Google Scholar
  10. [10]
    Goldwasser S, Micali S, Rivest R. A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks [J].Siam Journal on Computing, 1988,17(2):281–308.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Coluccio D. Implementation of a Hash-Based Digital Signature Scheme Using Fractal Merkle Tree Representation [EB/OL]. [2005-11-06]. Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Wang Xiaofei
    • 1
  • Hong Fan
    • 1
    Email author
  • Tang Xueming
    • 1
  • Cui Guohua
    • 1
  1. 1.College of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhan, HubeiChina

Personalised recommendations