The Indian Journal of Pediatrics

, Volume 65, Issue 6, pp 805–814

Cell cycle control and cancer

  • Hans Peter Wagner
Symposium : Hematology/Oncology-Part II


This review consists of two parts. In the first part normal mechanisms regulating the progression of cells through the cell cycle are briefly reviewed. Besides mitogenic stimulation, cyclin kinase inhibition, the G1 restriction point and the prb pathway, accuracy of DNA replication and DNA repair, the G2 to M transition, apoptosis and the p 53 pathway, proteolytic, in particular ubiquitindependent mechanisms involved in the initiation of DNA synthesis in the separation of sister chromatids and in the telophase to GO/G1 transition, are discussed. In the second part oncogene and tumor suppressor gene products are briefly characterized. Aberrations of cell cycle control mechanisms associated with cancer are grouped as follows : deregulation of protooncogenes by translocations juxtaposing protooncogenes to immunoglobulin — or T cell receptor genes; translocations producing chimeric proteins unique to cancer cells; inversions and amplifications resulting in over expression of regulator genes; and deletions and mutations of tumor suppressor genes. It is emphasized that cancer is the result of a multistep process and that uncontrolled cell production and other alterations are, as a rule, late phenomena.

Key words

Cell cycle Regulator proteins Checkpoints Cancer Chromosomal aberrations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murray AW, Kirschner MW. Dominoes and clocks: the union of two views of the cell cycle.Science 1989; 247: 614–621.CrossRefGoogle Scholar
  2. 2.
    Nasmyth K. Viewpoint, putting the cell cycle in order.Science 1996; 274: 1643–1645.PubMedCrossRefGoogle Scholar
  3. 3.
    Hartwell LH, Weinert TA. Checkpoints: Controls that ensure the order of cell cycle events.Science 1989; 246 : 629–634.PubMedCrossRefGoogle Scholar
  4. 4.
    Elledge SJ. Cell cycle checkpoints: preventing an identity crisis.Science 1996; 274:1664–1672.PubMedCrossRefGoogle Scholar
  5. 5.
    Pardee AB. G1 events and regulation of cell proliferation.Science 1989; 246: 603–608.PubMedCrossRefGoogle Scholar
  6. 6.
    Aronson S. Growth factors and cancer.Science 1991; 254:1146–1153.CrossRefGoogle Scholar
  7. 7.
    Fisher RP, Morgan DO. A novel cyclin associates with MO15/cdk7 to form a cdkactivating kinase.Cell 1994; 78: 713–724.PubMedCrossRefGoogle Scholar
  8. 8.
    Morgan DO. Principles of cdk regulation.Nature 1995; 374: 374 :131–134.PubMedCrossRefGoogle Scholar
  9. 9.
    Nigg EA. Cyclin dependent kinase 7: at the crossroads of transcription, DNA repair and cell cycle control?Curr Opin Cell Biol 1996; 8 : 312–317.PubMedCrossRefGoogle Scholar
  10. 10.
    Dynlacht BD. Regulation of transcription by proteins that control the cell cycle.Nature 1997; 389:149–152.PubMedCrossRefGoogle Scholar
  11. 11.
    Sherr CJ. Cancer cell cycle.Science 1996; 274:1672–1677.PubMedCrossRefGoogle Scholar
  12. 12.
    Jacks T, Weinberg RA. The expanding role of cell cycle regulators.Science 1998; 280:1035–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Weinberg RA. The retinoblastoma protein and cell cycle control.Cell 1995; 81: 323–330.PubMedCrossRefGoogle Scholar
  14. 14.
    Dyson N. pRB, p107 and the regulation of the E2F transcription factor.J Cell Sci (suppl) 1994; 18: 81–87.Google Scholar
  15. 15.
    Stillmann B. Cell cycle control of DNA replication.Science 1996; 274: 1659–1664.CrossRefGoogle Scholar
  16. 16.
    Chong JPJ, Mahbubani HM, Khoo C-Y, Blow JJ. Purification of an MCM-containing complex as a component of the DNA replication licensing system.Nature 1995; 375: 418–421.PubMedCrossRefGoogle Scholar
  17. 17.
    King RW, Deshaies RJ, Peters J-M, Kirschner MW. How proteolysis drives the cell cycle.Science 1996; 274:1652–1659.PubMedCrossRefGoogle Scholar
  18. 18.
    Sancar A. Mechanisms of DNA excision repair.Science 1994; 266:1954–1956.PubMedCrossRefGoogle Scholar
  19. 19.
    Brown L, McCarthy N. A sense-abl response ?Nature 1997; 387: 450–451.PubMedCrossRefGoogle Scholar
  20. 20.
    Baskaran R, Wood LD, Whitaker LLet al. Ataxia telangiectasia mutant protein activates c-able tyrosine kinase in response to ionizing radiation.Nature 1997; 387: 516–519.PubMedCrossRefGoogle Scholar
  21. 21.
    Vogelstein B, Kinzler KW. p53 function and dysfunction.Cell 1992; 70: 523–526.PubMedCrossRefGoogle Scholar
  22. 22.
    Prives C, Manfredi JJ. The p53 tumor suppressor protein.Genes Dev 1993; 7: 529–534.PubMedCrossRefGoogle Scholar
  23. 23.
    Wyllie A. Apoptosis. Clues in the p53 murder mystery.Nature 1997; 389: 237–238.PubMedCrossRefGoogle Scholar
  24. 24.
    Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis.Nature 1997; 389: H300–305.CrossRefGoogle Scholar
  25. 25.
    Greider CW, Blackburn EH. Telomeres, telomerase and cancer.Sci Amer 1996; 274 (2): 80–85.CrossRefGoogle Scholar
  26. 26.
    De Lange T. Telomeres and senescence: ending the debate.Science 1998; 279 : 334–335.PubMedCrossRefGoogle Scholar
  27. 27.
    Bodnar AG, Quelette M, Frolkis Met al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–352.PubMedCrossRefGoogle Scholar
  28. 28.
    Peter M, Nakagawa J, Doree M, Labbé JC, Nigg EA. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase.Cell 1990; 61: 591–602.PubMedCrossRefGoogle Scholar
  29. 29.
    Duke RC, Ojcius DM, Young JD-E. Cell suicide in health and disease.Sci Amer 1996; 274 (6): 48–55.Google Scholar
  30. 30.
    Nagata S, Goldstein P. The fas death factor. Science 1995; 267:1449–1456.PubMedCrossRefGoogle Scholar
  31. 31.
    Chinnaiyan AM, Chaudhary D, O’Rourke K, Koonin EV, Dixit VM. Role of CED-4 in the activation of CED-3. Nature 1997; 388: 728–729.PubMedCrossRefGoogle Scholar
  32. 32.
    Irmler M, Thome M, Hahne Met al. Inhibition of death receptor signals by cellular FLIP.Nature 1997; 388:190–195.PubMedCrossRefGoogle Scholar
  33. 33.
    Reed JC. Double identity for proteins of the Bcl-2 family.Nature 1997; 387: 773–776.PubMedCrossRefGoogle Scholar
  34. 34.
    Krontiris TG. Oncogenes.N Engl J Med 1995; 333: 303–306.PubMedCrossRefGoogle Scholar
  35. 35.
    Weinberg RA. Tumor suppressor genes.Science 1991; 254:1138–1146.PubMedCrossRefGoogle Scholar
  36. 36.
    Rabbits TH. Chromosomal translocations in humna cancer.Nature 1994; 372: 143–149.CrossRefGoogle Scholar
  37. 37.
    Gu W, Cechova K, Tassi V, Della-Favera R. Opposite regulation of gene transcription and cell proliferation by c-myc and Max.Proc Natl Acad Sci 1993; 90: 2935–2939.PubMedCrossRefGoogle Scholar
  38. 38.
    Ayer D, Kretzner L, Eisenmann R. Mad, a heterodimeric partner for Max that antagonizes Myc transcriptional activity.Cell 1993; 72: 211–222.PubMedCrossRefGoogle Scholar
  39. 39.
    Zervos A, Gyuris J, Brent R. Mxi, a protein that specifically interacts with Max to bind Myc-Max recognition sites.Cell 1993; 72: 223–232.PubMedCrossRefGoogle Scholar
  40. 40.
    Amati B, Brooks M, Levy Net al. Oncogenic activity of the c-myc protein requires dimerization with Max.Cell 1993; 72: 233–245PubMedCrossRefGoogle Scholar
  41. 41.
    Uckun FM, Sensel MG, Sun Let al. Biology and treatment of childhood T-lineage acute lymphoblastic leukemia.Blood 1998; 91:735–746.PubMedGoogle Scholar
  42. 42.
    Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-able oncogene products.Science 1990; 247: 1079–1082.PubMedCrossRefGoogle Scholar
  43. 43.
    Carroll M, Ohno-Jones S, Tamura Set al. CGP 57148, a tyrosine kinase inhibitor inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins.Blood 1997; 90: 4947–4952.PubMedGoogle Scholar
  44. 44.
    Tenen DG, Hromas R, Licht JD, Zhang D-E Transcription factors, normal myeloid development and leukemia.Blood 1997; 90: 489–519.PubMedGoogle Scholar
  45. 45.
    Okuda T, Cai Z, Yang Set al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal fmitive hematopoiesis and directly generates dysplastic hematopoietic progenitors.Blood 1998; 91: 3134–3143.PubMedGoogle Scholar
  46. 46.
    Benedetti L, Levin AA, Scicchitano BMet al. Characterization of the retinoid binding properties of the major fusion products present in acute promyelocytic leukemia cells.Blood 1997; 90:1175–1185.PubMedGoogle Scholar
  47. 47.
    Hunger SP. Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis.Blood 1996; 87:1211–1224.PubMedGoogle Scholar
  48. 48.
    Poirel H, Rack K, Delabesse Eet al. Incidence and characterization of MLL gene (l1q23) rearrangements in acute myeloid leukemia M1 and M5.Blood 1996; 87: 2496–2505.PubMedGoogle Scholar
  49. 49.
    Behm FG, Raimondi SC, Frestedt JLet al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age.Blood 1996; 87: 2870–2877.PubMedGoogle Scholar
  50. 50.
    Kelly KM, Warner RB, Sorensen PHB, Xiong QB, Barr FG. Common and variant gene fusions predict distinct clinical phenotypes in rhabdomyosarcoma.J Clin Oncol 1997; 15:1831–1836.PubMedGoogle Scholar
  51. 51.
    Delattre O, Zucman J, Melot Tet al The Ewing family of tumors — a subgroup of small-round-cell tumors defined by specific chimeric transcripts.N Engl J Med 1994; 331: 294–299.PubMedCrossRefGoogle Scholar
  52. 52.
    Zoubek A, Dockhorn-Dwornizak B, Delattre Oet al. Does expression of different EWS chimeric transcripts define clinically distinct risk gorups of Ewing tumor patients?J Clin Oncol 1996; 14:1245–1251.PubMedGoogle Scholar
  53. 53.
    Motokura T, Bloom T, Kim HGet al. A novel cyclin encoded by a bel1-linked candidate oncogene.Nature 1991; 350: 512–515.PubMedCrossRefGoogle Scholar
  54. 54.
    Khatib ZA, Matsushime H, Valentine M,et al. Coamplification of the CDK4 gene with MDM2 and GL1 in human sarcomas.Cancer Res 1993; 53: 5535–5541.PubMedGoogle Scholar
  55. 55.
    He J, Allen JR, Collins VPet al. CDK4 amplification is an alternative mechanism to pl6 gene homozygous deletion in glioma cell lines.Cancer Res 1994; 54: 5804–5807.PubMedGoogle Scholar
  56. 56.
    Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases and cdk inhibitors in human cancer.Adv Cancer Res 1996; 68: 67–108.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang TC, Cardiff RD, Zuckerberg L Lees E, Arnold A, Schmidt EV. Mammary hyperplasia and carcinoma in MMTY-cyclin D1 transgenic mice.Nature 1994; 369: 669–671.PubMedCrossRefGoogle Scholar
  58. 58.
    Sicinski P, Donaker JL, Parker SBet al. Cyclin D1 provides a link between development and oncogenes in the retina and breast.Cell 1995; 82: 621–630.PubMedCrossRefGoogle Scholar
  59. 59.
    White PS, Maris JM, Beltinger Cet al. A region of consistent deletion in neuroblastoma maps within lp36.2-2.3Proc Natl Acad Sci USA 1995; 92 ; 5520–5524.PubMedCrossRefGoogle Scholar
  60. 60.
    Tonini GP, Boni L Pession al. MYCN oncogene amplification in neuroblastoma is associated with worse prognosis, except in stage 4s; the Italian experience with 275 children.J Clin Oncol 1997; 15: 85–93.PubMedGoogle Scholar
  61. 61.
    Sellers WR, Kaelin Jr WG. Role of the retinoblastoma protein in the pathogenesis of human cancer.J Clin Oncol 1997; 15: 3301–3312.PubMedGoogle Scholar
  62. 62.
    Alani RM, Munger K. Human papillomavirus and associated malignancies.J Clin Oncl 1998; 16: 330–337.Google Scholar
  63. 63.
    Liggett Jr WH, Sidransky D. Role of the pl6 tumor suppressor gene in cancer.J Clin Oncol 1998; 16:1197–1206.PubMedGoogle Scholar
  64. 64.
    Hussussian CJ, Struewing JP, Goldstein AMet al. Germline pl6 mutations in familial melanoma.Nature Genet 1994; 8: 15–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Goldstein AM, Fraser MC, Struewing JPet al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4a mutations.N Engl J Med 1994; 333: 970–974.CrossRefGoogle Scholar
  66. 66.
    Reznikoff CA, Yeager TR, Belair CDet al. Elevated pl6 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells.Cancer Res 1996; 56: 2886–2890.PubMedGoogle Scholar
  67. 67.
    Hollstein M, Sidransky D, Vogelstein B, Harris C. p53 mutations in human cancer.Science 1991; 253: 49–53.PubMedCrossRefGoogle Scholar
  68. 68.
    Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene.N Engl J Med 1993; 1318–1327.Google Scholar

Copyright information

© Dr. K C Chaudhuri Foundation 1998

Authors and Affiliations

  • Hans Peter Wagner
    • 1
  1. 1.University of BernBernSwitzerland
  2. 2.WabernSwitzerland

Personalised recommendations