Folia Microbiologica

, Volume 44, Issue 6, pp 587–624 | Cite as

Oxidative stress in microorganisms—I

Microbialvs. higher cells—Damage and defenses in relation to cell aging and death
  • K. Sigler
  • J. Chaloupka
  • J. Brozmanová
  • N. Stadler
  • M. Höfer


Oxidative stress in microbial cells shares many similarities with other cell types but it has its specific features which may differe in prokaryotic and eukaryotic cells. We survey here the properties and actions of primary sources of oxidative stress, the role of transition metals in oxidative stress and cell protective machinery of microbial cells, and compare them with analogous features of other cell types. Other features to be compared are the action of reactive oxygen species (ROS) on cell constituents, secondary lipid-or protein-based radicals and other stress products. Repair of oxidative injury by microorganisms and proteolytic removal of irreparable cell constituents are briefly described. Oxidative damage of aerobically growing microbial cells by endogenously formed ROS mostly does not induce changes similar to the aging of multiplying mammalian cells. Rapid growth of bacteria and yeast prevents accumulation of impaired macromolecules which are repaired, diluted or eliminated. During growth some simple fungi, such as yeast orPodospora spp., exhibit aging whose primary cause seems to be fragmentation of the nucleolus or impairment of mitochondrial DNA integrity. Yeast cell aging seems to be accelerated by endogenous oxidative stress. Unlike most growing microbial cells, stationaryphase cells gradually lose their viability because of a continuous oxidative stress, in spite of an increased synthesis of antioxidant enzymes. Unlike in most microorganisms, in plant and animal cells a severe oxidative stress induces a specific programmed death pathway-apoptosis. The scant data on the microbial death mechanisms induced by oxidative stress indicate that in bacteria cell death can result from activation of autolytic enzymes (similarly to the programmed mother-cell death at the end of bacillar sporulation). Yeast and other simple eukaryotes contain components of a proapoptotic pathway which are silent under normal conditions but can be activated by oxidative stress or by manifestation of mammalian death genes, such asbak orbax. Other aspects, such as regulation of oxidative-stress response, role of defense enzymes and their control, acquisition of stress tolerance, stress signaling and its role in stress response, as well as cross-talk between different stress factors, will be the subject of a subsequent review.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams M.W.W.: The biochemical diversity of life near and above 100°C in marine environments.J. Appl. Microbiol.85, 108S-117S (1999).Google Scholar
  2. Adjimani J.P., Owusu E.: Nonenzymatic NADH/FMN-dependent reduction of ferric siderophores.J. Inorg. Biochem.66, 247–252 (1997).CrossRefGoogle Scholar
  3. Ahmad S.I., Kirk S.H., Eisenstark A.: Thymine metabolism and thymineless death in prokaryotes and eukaryotes.Ann. Rev. Microbiol.52, 591–625 (1998).CrossRefGoogle Scholar
  4. Aizenman E., Engelberg-Kulka H., Glaser G.: AnEscherichia coli chromosomal addiction molecule regulated by 3',5'-bispyrophosphate: a model for programmed bacterial cell death.Proc. Nat. Acad. Sci. USA93, 6059–6063 (1996).PubMedCrossRefGoogle Scholar
  5. Akaike T., Suga M., Maeda H.: Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO.Proc. Soc. Exp. Biol. Med.217, 64–73 (1998).PubMedGoogle Scholar
  6. Albrecht-Gary A.-M., Crumbliss A.L.: Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release, pp. 240–323 inMetal Ions in Biological Systems (A. Sigel, H. Sigel, Eds.). Marcel Dekker, New York-Basel-Hong Kong 1998.Google Scholar
  7. Allen R.T., Cluck M.W., Agrawal D.K.: Mechanisms controlling cellular suicide, role of bcl-2 and caspases.Cell Mol. Life Sci.54, 427–445 (1998).PubMedCrossRefGoogle Scholar
  8. Altuvia S., Almirón M., Huisman G., Kolter R., Storz G.: Thedps promoter is activated by OxyR during growth and by IHF and σS in stationary phase.Mol. Microbiol.13, 265–272 (1994).PubMedCrossRefGoogle Scholar
  9. Ameisen J.C.: The origin of programmed cell death.Science272, 1278–1279 (1996).PubMedCrossRefGoogle Scholar
  10. Ames B.N., Shigenaga M.K., Hagen T.M.: Oxidants, antioxidants and degenerative disease of aging.Proc. Nat. Acad. Sci. USA90, 7915–7922 (1993).PubMedCrossRefGoogle Scholar
  11. Ames B.M., Shigenaga M.K.: Oxidants are the major contributor to aging.Ann. New York Acad. Sci.663, 85–96 (1992).CrossRefGoogle Scholar
  12. Armstrong D.,Free Radical and Antioxidant Protocols/Methods. Mol. Biol. 108 (D. Armstrong, Ed.), Humana Press, Totowa (NJ) 1998.Google Scholar
  13. Ashrafi K., Sinclair D., Gordon J.I., Guarente L.: Pasage through stationary phase advances replicative aging inSaccharomyces cerevisiae.Proc. Nat. Acad. Sci. USA96, 9100–9105 (1999).PubMedCrossRefGoogle Scholar
  14. Askwith C., Kaplan J.: Iron and copper transport in yeast and its relevance to human disease.Trends Biochem. Sci.23, 135–138 (1998).PubMedCrossRefGoogle Scholar
  15. Aslund F., Beckwith J.: The thioredoxin superfamily: redundancy, specificity, and gray-area genomics.J. Bacteriol.181, 1375–1379 (1999).PubMedGoogle Scholar
  16. Assmann S., Sigler K., Höfer M.: Cd2+-induced damage to yeast plasma membrane and its alleviation by Zn2+: studies onSchizosaccharomyces pombe cells and reconstituted plasma membrane vesiclesArch. Microbiol.165, 279–284 (1996).CrossRefGoogle Scholar
  17. Ashoh S., Nishimaki K., Nanbu-Wakao R., Ohta S.: A trace amount of the human pro-apoptotic factor Bax induces bacterial death accompanied by damage of DNA.J. Biol. Chem.273, 11384–11391 (1998).CrossRefGoogle Scholar
  18. Augeri L., Lee Y.M., Barton A.B., Doetsch P.W.: Purification, characterization, gene cloning, and expression ofSaccharomyces cerevisiae redoxyendonuclease, a homolog ofEscherichia coli endonuclease III.Biochemistry36, 721–729 (1997).PubMedCrossRefGoogle Scholar
  19. Bagg A., Neilands J.B.: Ferric uptake regulation protein acts as a repressor employing iron(II) as a cofactor to bind the operator of an iron transport operon inEscherichia coli.Biochemistry26, 5471–5477 (1987).PubMedCrossRefGoogle Scholar
  20. Bailey S.M., Fauconnet A.-L., Reinke L.A.: Comparison of salicylate andd-phenylalanine for detection of hydroxyl radicals in chemical and biological reactions.Redox Report3, 17–22 (1997).Google Scholar
  21. Barker M.G., Brimage L.J.E., Smart K.A.: Effect of Cu,Zn superoxide dismutase mutation on replicative senescence inSaccharomyces cerevisiae.FEMS Microbiol. Lett.177, 199–204 (1999).PubMedCrossRefGoogle Scholar
  22. Barr D.P., Gunther M.R., Deterling L.J., Tomer K.B., Mason R.P.: ESR spin trapping of a protein-derived tyrosyl radical from the reaction of cytochromec with hydrogen peroxide.J. Biol. Chem.271, 15498–15503 (1996).PubMedCrossRefGoogle Scholar
  23. Basu A.K., Loechler E.L., Leadon L.A., Essigman J.M.: Genetic effects of thymine glycols: site specific mutagenesis and molecular modeling studies.Proc. Nat. Acad. Sci. USA86, 7677–7681 (1989).PubMedCrossRefGoogle Scholar
  24. Beall B., Sanden G.N.: ABordetella pertussis fepA homologue required for utilization of exogenous ferric enterobactin.Microbiology (UK)141, 3193–3205 (1995).Google Scholar
  25. Becker-Hapak M., Eisenstark A.: Role ofrpoS in the regulation of glutathione oxidoreductase (gor) inEscherichia coli.FEMS Microbiol. Lett.134, 39–44 (1995).PubMedGoogle Scholar
  26. Beckman K.B., Ames B.N.: The free radical theory of aging matures.Physiol. Rev.78, 547–581 (1998).PubMedGoogle Scholar
  27. Belazzi T., Wagner A., Wieser R., Schanz M., Adam G., Hartig A., Ruis H.: Negative regulation of transcription of theS. cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element.EMBO J.10, 585–592 (1991).PubMedGoogle Scholar
  28. Benzie I.F.F., Strain J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay.Anal. Biochem.239, 70–76 (1996).PubMedCrossRefGoogle Scholar
  29. Biswas G.B., Anderson J.E., Sparling P.F.: Cloning and functional characterization ofNeisseria gonorrhoeae tonB, exbB andsxbD genes.Mol. Microbiol.24, 169–179 (1997).PubMedCrossRefGoogle Scholar
  30. Billard P., Dumond H., Bolotin-Fukuhara M.: Characterisation of an AP-1-like transcription factor that mediates an oxidative stress response inKluyveromyces lactis.Mol. Gen. Genet.257, 62–70 (1997).PubMedCrossRefGoogle Scholar
  31. Bleau G., Giasson C., Brunette I.: Measurement of hydrogen peroxide in biological samples containing high levels of ascorbic acid.Anal. Biochem.263, 13–17 (1998).PubMedCrossRefGoogle Scholar
  32. Bloomfield S.F., Arthur M.: Interactions ofBacillus subtilis spores with sodium hypochlorite, sodium dichloroisocyanurate and chloramine.J. Appl. Bacteriol.72, 166–172 (1992).PubMedGoogle Scholar
  33. Boiteux S.: Properties and biological functions of the Nth and Fpg proteins ofEscherichia coli: Two DNA glycosylases that repair oxidative damage in DNA.Photochem. Photobiol.B19, 87–96 (1993).CrossRefGoogle Scholar
  34. Brennan R.J., Schiestl R.H.: Cadmium is an inducer of oxidative stress in yeast.Mutat. Res.356, 171–178 (1996).PubMedGoogle Scholar
  35. Brennan R.J., Schiestl R.H.: Amline and its metabolites generate free radicals in yeast.Mutagenesis12, 215–220 (1997).PubMedCrossRefGoogle Scholar
  36. Breeuwer P., Drocourt J.-L., Rombouts F.M., Abee T.: Energy-dependent, carrier-mediated extrusion of carboxyfluorescein fromS. cerevisiae allows rapid assessment of cell viability by flow cytometry.Appl. Environ. Microbiol.60, 1467–1472 (1994).PubMedGoogle Scholar
  37. Breeuwer P., Drocourt J.-L., Bunschoten N., Zwietwring M.H., Rombouts F.M., Abee T.: Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases inS. cerevisiae, which result in accumulation of fluorescent product.Appl. Environ. Microbiol.61, 1614–1619 (1995).PubMedGoogle Scholar
  38. Brickman T.J., Armstrong S.K.: Purification, spectroscopic analysis and biological activity of the macrocyclic dihydroxamate siderophore alcaligin produced byBordetella bronchiseptica.Biometals9, 191–203 (1996).PubMedCrossRefGoogle Scholar
  39. Cai J., Jones D.P.: Superoxide in apoptosis. Mitochondrial generation triggered by cytochromec loss.J. Biol. Chem.273, 11401–11404 (1998).PubMedCrossRefGoogle Scholar
  40. Campisi J.: Replicative senescence: an old live's tale?.Cell84, 497–500 (1996).PubMedCrossRefGoogle Scholar
  41. Candeias L.P., Patel K.B., Stratford M.R.L., Wardman P.: Free hydroxyl radicals are formed on reaction between the neutrophilderived species superoxide anion and hypochlorous acid.FEBS Lett.333, 151–153 (1993).PubMedCrossRefGoogle Scholar
  42. Candeias L.P., Stratford M.R.L., Wardman P.: Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron(II) complex.Free Radicals Res.20, 241–249 (1994).Google Scholar
  43. Cannac-Caffrey V., Hudry-Clergeon G., Petillot Y., Gagnon J., Zaccai G., Franzetti B.: The protein sequence of an archeal catalase-peroxidase.Biochimie80, 1003–1011 (1998).PubMedCrossRefGoogle Scholar
  44. Castignetti D.: Probing ofPseudomonas aeruginosa, P. aureofaciens, Burkholderia (Pseudomonas) cepacia, P. fluorescens, andP. putida with the ferripyochelin receptor A gene and the synthesis of pyochelin inP. aureofaciens, P. fluorescens andP. putida.Curr. Microbiol.34, 250–257 (1997).PubMedCrossRefGoogle Scholar
  45. Catalano C.E., Choe Y.S., Ortiz de Montellano P.R.: Reaction of the protein radical in peroxide-treated myoglobin.J. Biol. Chem.264, 10534–10541 (1989).PubMedGoogle Scholar
  46. Chaloupka J., Vinter V.: Programmed cell death in bacteria.Folia Microbiol.41, 451–464 (1996).CrossRefGoogle Scholar
  47. Chen C.-J., Sparling P.F., Lewis L.A., Dyer D.W., Elkins C.E.: Identification and purification of a hemoglobin-binding outer membrane proteins fromNeisseria gonorrhoeae.Infect. Immun.64, 5008–5014 (1996).PubMedGoogle Scholar
  48. Chopra A.K., Strandová M., Chaloupka J.: Turnover of abnormal proteins inBacillus megaterium andSaccharomyces cerevisiae: differences betweenin vivo andin vitro degradation.Arch. Microbiol.145, 97–103 (1986).PubMedCrossRefGoogle Scholar
  49. Christensen B.E., Myhr M., Smidsrød O.: The degradation of xanthan by hydrogen peroxide in the presence of ferrous ions. Comparison to acid hydrolysis.Carbohydr. Res.280, 85–99 (1996).PubMedCrossRefGoogle Scholar
  50. CohenG.: The Fenton reaction, pp. 55–64 inCRC Handbook for Oxygen Radical Research (R.A. Greenwald, Ed.). CRC Press, Boca Raton 1985.Google Scholar
  51. Colepicolo P., Camarero V.C.P.C., Nicolas M.T., Bassot J.-M., Karnovsky M.L., Hastings J.W.: A sensitive and specific assay for superoxide anion released by neutrophils or macrophages based on bioluminescence of polynoidin.Anal. Biochem.184, 369–374 (1990).PubMedCrossRefGoogle Scholar
  52. Cortez N., Carillo N., Pasternak C., Balzer A., Klug G.: Molecular cloning and expression analysis ofRhodobacter capsulatus sodB gene, encoding an iron superoxide dismutase.J. Bacteriol.180, 5413–5420 (1998).PubMedGoogle Scholar
  53. Coulanges V., Andre P., Vidon D.J.-M.: Effect on siderophores, catecholamines, and catechol compounds onListeria spp. Growth in iron-complexed medium.Biochem. Biophys. Res. Commun.167, 126–130 (1998).Google Scholar
  54. Craig E.A., Weissman J.S., Horwich A.L.: Heat shock proteins and molecular chaperones mediators of protein conformation and turnover in the cell.Cell78, 365–372 (1994).PubMedCrossRefGoogle Scholar
  55. Cummings D.J.: Mitochondrial DNA inPodospora anserina. A molecular approach to cellular senescence.Monograph. Dev. Biol.17, 254–266 (1984).Google Scholar
  56. Cunningham R.C.: DNA glycosylases.Mutat. Res.383, 189–196 (1997).PubMedGoogle Scholar
  57. DalleDonne I., Milzani A., Colombo R.: H2O2-treated actin: assembly and polymer interactions with cross-linking proteins.Biophys. J.69, 2710–2719 (1995).PubMedCrossRefGoogle Scholar
  58. Dang J., Holub E.: La dolce vita: a molecular feast in plant-pathogen interactions.Cell91, 17–24 (1997).CrossRefGoogle Scholar
  59. Daniel C., Haentjens S., Bissinger M.C., Courcol R.J.: Characterization of theAcinetobacter baumanii Fur regulator: cloning and sequencing of thefur homolog gene.FEMS Microbiol. Lett.170, 199–209 (1999).PubMedCrossRefGoogle Scholar
  60. Davies K.J.A.: Intracellular proteolytic systems may function as secondary antioxidant defenses: an hypothesis.Free Radicals Biol. Med.2, 155–173 (1986).CrossRefGoogle Scholar
  61. Davies K.J.A.: Protein damage and degradation by oxygen radicals. I. General aspects.J. Biol. Chem.262, 9895–9901 (1987).PubMedGoogle Scholar
  62. Davies K.J.A., Lin S.W.: Degradation of oxidatively denatured proteins inEscherichia coli.Free Radicals Biol. Med.5, 215–223 (1988a).CrossRefGoogle Scholar
  63. Davies K.J.A., Lin S.W.: Oxidatively denatured proteins are degraded by an TP-independent proteolytic pathway inEscherichia coli.Free Radicals Biol. Med.5, 225–236 (1988b).CrossRefGoogle Scholar
  64. Davies M.J., Dean R.T.:Radical-mediated Protein Oxidation. From Chemistry to Medicine Oxford University Press. Oxford-New York-Tokyo 1997.Google Scholar
  65. Dean R.T., Fu S., Stocker R., Davies M.J.: Biochemistry and pathology of radical-mediated protein oxidation.Biochem. J.324, 1–18 (1997).PubMedGoogle Scholar
  66. Decamp O., Rajendran N., Nakano H., Nair G.B.: Estimation of the viability ofVibrio cholerae O139 by assessing cell membrane integrity.Microbios92, 83–89 (1997).PubMedGoogle Scholar
  67. Demple B.: Adaptive responses to genotoxic damage: bacterial strategies to prevent mutation and cell death.Bioassays6, 154–160 (1986).Google Scholar
  68. Demple B., Harrison L.: Repair of oxidative damage to DNA: enzymology and biology.Ann. Rev. Biochem.63, 915–948 (1994).PubMedCrossRefGoogle Scholar
  69. Deretic V., Philipp W., Dhandayuthapani S., Mudd M.H., Curcic R., Garbe T., Heym B., Viat E., Cole S.T.:Mycobacterium tuberculosis is a natural mutant with an inactive oxidative-stress regulatory gene: implication for sensitivity to isoniazide.Mol. Microbiol.17, 889–900 (1995).PubMedCrossRefGoogle Scholar
  70. Deutsch J.C.: Ascorbic acid oxidation by hydrogen peroxide.Anal. Biochem.255, 1–7 (1998).PubMedCrossRefGoogle Scholar
  71. Dickson R.C.: Sphingolipid functions inSaccharomyces cerevisiae: comparison to mammals.Ann. Rev. Biochem.67, 27–48 (1998).PubMedCrossRefGoogle Scholar
  72. Di Mascio P., Bechara E.J.H., Medeiros M.H.G., Briviba K., Sies H.: Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide.FEBS Lett.355, 287–289 (1994).PubMedCrossRefGoogle Scholar
  73. Diomina G.R., Pleshakova O.V., Sibeldina L.A., Kharatian E.F., Shchipanova I.N., Ostrovsky D.N.: Stability of a recently discovered product of oxidative stress in bacterial cells.Biochemistry (Moscow)60, 481–486 (1995).Google Scholar
  74. Dix D., Bridgham J., Broderius M., Eide D.: Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron.J. Biol. Chem.272, 11770–11777 (1997).PubMedCrossRefGoogle Scholar
  75. Dizdaroglu M.: Oxidative damage to DNA in mammalian chromatin.Mutat. Res.275, 331–342 (1992).PubMedGoogle Scholar
  76. Donnini D., Zambito A.M., Perrella G., Ambesi-Impiombato F.S., Curcio F.: Glucose may induce cell death through a free radical-mediated mechanism.Biochem. Biophys. Res. Commun.219, 412–417 (1996).PubMedCrossRefGoogle Scholar
  77. Doyle R.J., Chaloupka J., Vinter V.: Turnover of cell wall in microorganisms.Microbiol. Rev.52, 554–567 (1988).PubMedGoogle Scholar
  78. Dowds B.C.A., Murphy P., Mc Conell D.J., Devine K.M.: Relationship among oxidative stress, growth cycle and sporulation inBacillus subtilis.J. Bacteriol.169, 5771–5775 (1987).PubMedGoogle Scholar
  79. Dreher D., Junod A.F.: Role of oxygen free radicals in cancer development.Eur. J. Cancer32A, 30–38 (1996).PubMedCrossRefGoogle Scholar
  80. Dukan S., Dadon S., Smulski D.R., Belkin S.: Hypochlorous acid activates the heat shock and sox RS systems ofEscherichia coli.Appl. Environ. Microbiol.62, 4003–4008 (1996).PubMedGoogle Scholar
  81. Dunning J.C., Ma Y., Marquis R.E.: Anaerobic killing of oral streptococci by reduced, transition metal cations.Appl. Environ. Microbiol.64, 27–33 (1998).PubMedGoogle Scholar
  82. Edeas M.A., Emerit I., Kalfoun Y., Lazizi Y., Cernjavski L., Levy A., Lindenbaum A.: Clastogenic factors in plasma of HIV-infected patients activate HIV-I replicationin vitro: inhibition by superoxide dismutase.Free Radicals Biol. Med.23, 571–578 (1997).CrossRefGoogle Scholar
  83. Eide D.J.: The molecular biology of metal ion transport inS. cerevisiae.Ann. Rev. Nutr.18, 441–469 (1998).CrossRefGoogle Scholar
  84. Eide L., Bjoras M., Pirovano M., Alseth I., Berdal K.G., Seeberg E.: Base excision of oxidative purine and pyrimidine DNA damage inSaccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonucleae III fromEscherichia coli.Proc. Nat. Acad. Sci. USA93, 10735–10740 (1996).PubMedCrossRefGoogle Scholar
  85. Eisenstark A., Miller K., Jones J. Levén S.:Escherichia coli genes involved in cell survival during dormancy: role of oxidative stress.Biochem. Biophys. Res. Commun.188, 1054–1059 (1992).PubMedCrossRefGoogle Scholar
  86. Eisenstark A., Yallaly P., Ivanova A., Miller C.: Genetic mechanisms involved in cellular recovery from oxidative stress.Arch. Insect. Biochem. Physiol.29, 159–173 (1995).PubMedCrossRefGoogle Scholar
  87. Ellis R.E., Yuan J., Horvitz H.R.: Mechanisms and function of cell death.Ann. Rev. Cell Biol.7, 663–698 (1991).PubMedGoogle Scholar
  88. Enoch T., Norbury C.: Cellular responses to DNA damage: cell-cycle check points, apoptosis and the roles of p53 and ATM.Trends Biol. Sci.20, 426–430 (1995).CrossRefGoogle Scholar
  89. Epe B.: DNA damage profiles induced by oxidizing agents.Rev. Physiol. Biochem. Pharmacol.127, 223–249 (1995).Google Scholar
  90. Errington J.:Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis.Microbiol. Rev.57, 1–33 (1993).PubMedGoogle Scholar
  91. Esterbauer H., Schaur R.J., Zollner H.: Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes.Free Radicals Biol. Med.10, 191–193 (1991).CrossRefGoogle Scholar
  92. Esterbauer H.: Cytotoxicity and genotoxicity of lipid oxidation products.Amer J. Clin. Nutr.57, 779S-786S (1993).PubMedGoogle Scholar
  93. Esterbauer H.: Estimation of peroxidative damage. A critical review.Pathol. Biol.,44, 25–28 (1996).PubMedGoogle Scholar
  94. Faragher R.G.A., Kipling D.: How might replicative senescence contribute to human ageing?Bioassays20, 985–991 (1998).CrossRefGoogle Scholar
  95. Farr S.B., Kogoma T.: Oxidative stress responses inEscherichia coli andSalmonella typhimurium.Microbiol. Rev.55, 561–585 (1991).PubMedGoogle Scholar
  96. Feng J., Yamanaka K., Niki H., Ogura T., Hiraga S.: New killing system controlled by two genes located immediately upstream of themukB gene inEscherichia coli.Mol. Gen. Genet.243, 136–147 (1994).PubMedGoogle Scholar
  97. Fenton W.A., Horwich A.L.: GroEL-mediated protein folding.Protein Sci.6, 743–760 (1997).PubMedCrossRefGoogle Scholar
  98. Ferguson G.P., Booth I.R.: Importance of glutathione for growth and survival ofEscherichia coli cells: detoxication of methylglyoxal and maintenance of intracellular K+.J. Bacteriol.180, 4314–4318 (1998).PubMedGoogle Scholar
  99. Flattery-O'Brien J.A., Daves I.W.: Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 inSaccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function.J. Biol. Chem.273, 8564–8571 (1998).PubMedCrossRefGoogle Scholar
  100. Flattery-O'Brien J.A., Grant C.M., Dawes I.W.: Stationary phase regulation of theSaccharomyces cerevisiae SOD2 gene is dependent on additive effects of HAP2/3/4/5-and STRE-binding elements.Mol. Microbiol.23, 303–312 (1997).PubMedCrossRefGoogle Scholar
  101. Fouz B., Biosca E.G., Amaro C.: High affinity iron uptake systems inVibrio damsela: role in the acquisition of iron from transferrin.J. Appl. Microbiol.82, 157–167 (1997).PubMedGoogle Scholar
  102. Fréhel C., Ryter A.: Reversibilité de la sporulation chezB. subtilis.Ann. Inst. Pasteur117, 297–311 (1969).Google Scholar
  103. Frenkel K., Wei L.H., Wei H.C.: 7,12-Dimethylbenz[a]anthracene induces oxidative DNA modificationin vivo.Free Radicals Biol. Med.19, 373–380 (1995).CrossRefGoogle Scholar
  104. Frew J.E., Jones P., Scholes G.: Spectrophotometric determination of hydrogen peroxide and organic hydroperoxides at low concentrations in aqueous solutions.Anal. Chim. Acta155, 139–150 (1983).CrossRefGoogle Scholar
  105. Friedberg E.C., Walker G.C., Siede W.:DNA Repair and Mutagenesis. AMS Press, Washington (DC) 1995.Google Scholar
  106. Fuentes A.M., Amabile-Cuevas C.F.: Antioxidant vitamins C and E affect the superoxide-mediated induction ofsoxRS regulon inEscherichia coli.Microbiology (UK)144, 1731–1736 (1998).Google Scholar
  107. Gabai V.L., Meriin A.B., Mosser D.D., Caron A.W., Rits S., Shifrin V.I., Sherman M.Y.: Hsp 70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance.J. Biol. Chem.272, 18033–18037 (1997).PubMedCrossRefGoogle Scholar
  108. Gardner P., Fridovich I.: Superoxide sensitivity of theEscherichia coli 6-phosphogluconate dehydratase.J. Biol. Chem.266, 1478–1483 (1991).PubMedGoogle Scholar
  109. Garner W.H., Garner M.H., Spector A.: H2O4-induced uncoupling of bovine lens Na+, K+-ATPase.Proc. Nat. Acad. Sci. USA80, 2044–2048 (1983).PubMedCrossRefGoogle Scholar
  110. Garner W.H., Garner M.H., Spector A.: Kinetic cooperativity change after H2O2 modification of (Na,K)-ATPase.J. Biol. Chem.259, 7712–7718 (1984).PubMedGoogle Scholar
  111. Gebicky J.M.: Protein hydroperoxides as new reactive oxygen species.Redox Report3, 99–110 (1997).Google Scholar
  112. Gershman R., Gilbert D.L., Nye S.W., Dwyer P., Fenn W.O.: Oxygen poisoning and X-irradiation: a mechanism in common.Science119, 623–629 (1854).CrossRefGoogle Scholar
  113. Gille G., Sigler K.: Oxygen and the living cells.Folia Microbiol.40, 131–152 (1997).CrossRefGoogle Scholar
  114. Gille G., Sigler K., Höfer M.: Response of catalase activity and membrane fluidity of aerobically grownSchizosaccharomyces pombe andS. cerevisiae to aeration and the presence of substrates.J. Gen. Microbiol.139, 1627–1634 (1993).PubMedGoogle Scholar
  115. Ginsburg I.: Could synergistic interactions among reactive oxygen species, proteinases, membrane-perforating enzymes, hydrolases, microbial hemolysins and cytokines be the main cause of tissue damage in infectious and inflammatory conditions?Med. Hypotheses51, 337–346 (1998).PubMedCrossRefGoogle Scholar
  116. Girard P.M., Boiteux S.: Repair of oxidized DNA bases in the yeastSaccharomyces cerevisiae.Biochimie79, 559–566 (1997).PubMedCrossRefGoogle Scholar
  117. Gockeritz D., Friedrich F., Yahya M.: Spectrophotometric determination of hydrogen peroxide.Pharmacie50, 437–438 (1995).Google Scholar
  118. Goff S.A., Goldberg A.L.: Production of abnormal proteins inE. coli stimulates transcription oflon and other heat shock genes.Cell41, 587–595 (1985).PubMedCrossRefGoogle Scholar
  119. Goldberg A.L., St. John A.C.: Intracellular protein degradation in mammalian and bacterial cells. Part 2.Ann. Rev. Biochem.45, 747–803 (1976).PubMedCrossRefGoogle Scholar
  120. Gossard F., Verly W.G.: Properties of the main endonuclease specific for apurinic sites ofEscherichia coli. Mechanism of apurinic site excision from DNA.Eur. J. Biochem.82, 321–332 (1978).PubMedCrossRefGoogle Scholar
  121. Gossett J., Lee K., Cunningham R.P., Doetsch P.W.: Yeast redoxyendonuclease: a DBA repair enzyme similar toEscherichia coli endonuclease III.Biochemistry27, 2629–2634 (1988).PubMedCrossRefGoogle Scholar
  122. Gottesman S., Wickner S., Maurizi M.R.: Protein quality control: triage by chaperones and proteases.Genes Develop.11, 815–823 (1997).PubMedCrossRefGoogle Scholar
  123. Grady J.K., Chasteen N.D., Harris D.C.: Radicals from “Good's” buffers.Anal. Biochem.173, 111–115 (1988).PubMedCrossRefGoogle Scholar
  124. Grant C.M., Dawes I.W.: Synthesis and role of glutathione in protection against oxidative stress in yeast.Redox Report2, 223–229 (1996).Google Scholar
  125. Green D., Kroemer G.: The central executioners of apoptosis: caspases or mitochondria?Trends Cell Biol.8, 267–271 (1998).PubMedCrossRefGoogle Scholar
  126. Greenberg J.T.: Programmed cell death: a way of life for plants.Proc. Nat. Acad. Sci. USA93, 12094–12097 (1996).PubMedCrossRefGoogle Scholar
  127. Greenwald R.A. (Ed.)CRC Handbook for Oxygen Radical Research. CRC Press, Boca Raton 1985.Google Scholar
  128. Greenwood N.N., Earnshaw A.:Chemistry of Elements, Vol. II, pp. 1121–1126. (in Czech) Informatorium, Prague 1993.Google Scholar
  129. Grollman A.P., Moriya M.: Mutagenesis by 8-oxoguanine: an enemy within.Trends Genet.9, 246–249 (1993).PubMedCrossRefGoogle Scholar
  130. Grune T., Reinheckel T., Joshi M., Davies K.J.A.: Proteolysis in cultured epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome.J. Biol. Chem.270, 2344–3451 (1995).PubMedCrossRefGoogle Scholar
  131. Grune T., Reinheckel T., Davies K.J.A.: Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome.J. Biol. Chem.271, 15504–15509 (1996).PubMedCrossRefGoogle Scholar
  132. Grune T., Reinheckel T., Davies K.J.A.: Degradation of oxidized proteins in mammalian cells.FASEB J.11, 526–534 (1997).PubMedGoogle Scholar
  133. Gutteridge J.M.: Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate.Biochem. J.224, 761–767 (1984).PubMedGoogle Scholar
  134. Gutteridge J.M.C., Quinlan G.J., Kovacic P.: Commentary: phagomimetic action of antimicrobial agents.Free Radicals Res.28, 1–14 (1998).Google Scholar
  135. Haberland A., Damerau W., Stösser R., Schimke I., Baumann G.: Fe2+/vitamin C—an appropriatein vitro model system to initiate lipid peroxidation.J. Inorg. Biochem.61, 43–53 (1996).CrossRefGoogle Scholar
  136. Hahn K.B., Lee K.J., Kim J.H., Cho S.W., Chung M.H.:Helicobacter pylori infection, oxidative DNA damage, gastric carcinogenesis, and reversibility by rebamipide.Digest Dis. Sci.43, S72-S77 (1998).CrossRefGoogle Scholar
  137. Halliwell B., Gutteridge J.M.C.: Formation of a thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts.FEBS Lett.128, 347–352 (1981).PubMedCrossRefGoogle Scholar
  138. Halliwell B., Gutteridge J.M.C.: Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts.Arch. Biochem. Biophys.246, 501–514 (1986).PubMedCrossRefGoogle Scholar
  139. Halliwell B., Gutteridge J.M.C.:Free Radicals in Biology and Medicine, 2nd ed. Clarendon Press, Oxford 1989.Google Scholar
  140. Halliwell B., Gutteridge J.M.C.: The definition and measurements of antioxidants in biological systems.Free Radicals Biol. Med.18, 125–126 (1995).CrossRefGoogle Scholar
  141. Hanlon M.C., Seybert D.W.: The pH dependence of lipid peroxidation using water-soluble azo initiators.Free Radicals Biol. Med.23, 712–719 (1997).CrossRefGoogle Scholar
  142. Hansberg W., de Groot H., Sies H.: Reactive oxygen species associated with cell differentiation inNeurospora crassa.Free Radicals Biol. Med.14, 287–293 (1993).CrossRefGoogle Scholar
  143. Harman D.: Aging: a theory based onfree radical and radiation biology.J. Gerontol.,11, 298–300 (1956).PubMedGoogle Scholar
  144. Harms C., Meyer M.A., Andreesen J.R.: Fast purification of thioredoxin reductase and of thioredoxin with an unusual redox-active centre from anaerobic amino-acid-utilizing bacteria.Microbiology (UK)144, 393–400 (1998).Google Scholar
  145. Hassett R.F., Romeo A.M., Kosman D.J.: Regulation of high affinity iron uptake in the yeastS. cerevisiae. Role of dioxygen and Fe(II).J. Biol. Chem.273, 7628–7636 (1998).PubMedCrossRefGoogle Scholar
  146. Hayes C.S., Klades-Aguiar B., Casillas-Martinez L., Setlow P.:In vitro andin vivo oxidation of methionine residues in small, acid-soluble spore proteins ofBacillus species.J. Bacteriol.180, 2694–2700 (1998).PubMedGoogle Scholar
  147. Hayflick L.: Cell biology of aging.Fed. Proc.38, 1847–1850 (1979).PubMedGoogle Scholar
  148. Hengge-Aronis R.: Survival of hunger and stress: the role ofrpoS in early stationary phase gene regulation inE. coli.Cell72, 165–168 (1993).PubMedCrossRefGoogle Scholar
  149. Henle E.S., Linn S.: Formation, prevention and repair of DNA damage by iron/hydrogen peroxide.J. Biol. Chem.272, 19095–19098 (1997).PubMedCrossRefGoogle Scholar
  150. Herbert V.: Prooxidant effects of antioxidant vitamins.J. Nutr.126, 1197S-1200S (1996).PubMedGoogle Scholar
  151. Hetts S.W.: To die or not to die. An overview, of apoptosis and its role in disease.J. Amer. Med. Assoc.279, 300–307 (1998).CrossRefGoogle Scholar
  152. Hidalgo E., Ding H., Demple B.: Redox signal transductionvia iron-sulfur clusters in the SoxR transcription activator.Trends Biochem. Sci.22, 207–210 (1997).PubMedCrossRefGoogle Scholar
  153. Higgins C.F.: ABC transporters: from microorganisms to man.Ann. Rev. Cell Biol.8, 67–113 (1992).PubMedGoogle Scholar
  154. Hjerde T., Stokke B.T., Smidsrød O., Christensen B.E.: Free-radical degradation of triple-stranded scleroglucan by hydrogen peroxide and ferrous ions.Carbohydr. Polymers37, 41–48 (1998).CrossRefGoogle Scholar
  155. Hochman A.: Programmed cell death in prokaryotes.Crit. Rev. Microbiol.23, 207–214 (1997).PubMedGoogle Scholar
  156. Hoehler D., Marquardt R.R., McIntosh A.R., Madhyastha S.: Free radical-mediated lipid peroxidation induced by T-2 toxin in yeast (Kluyveromyces marxianus).J. Nutr. Biochem.9, 370–379 (1998).CrossRefGoogle Scholar
  157. Holmgren A.: Thioredoxin and glutaredoxin.J. Biol. Chem.264, 13963–13969 (1989).PubMedGoogle Scholar
  158. Howlett N.G., Avery S.V.: Induction of lipid peroxidation during heavy metal stress inS. cerevisiae and influence of plasma membrane fatty acid unsaturation.Appl. Environ. Microbiol.63, 2971–2976 (1997).PubMedGoogle Scholar
  159. Imlay J.A., Linn S.: DNA damage and oxygen radical toxicity.Science240, 1302–1309 (1988).PubMedCrossRefGoogle Scholar
  160. Ink B., Zörnig M., Baum B., Hajibagheri N., James C., Chittenden T., Evan G.: Human Bak induces cell death inSchizosaccharomyces pombe with morphological changes similar to those with apoptosis in mammalian cells.Mol. Cell Biol.17, 2468–2474 (1997).PubMedGoogle Scholar
  161. Irani K., Goldschmidt-Clermont P.J.: Ras, superoxide and signal transduction.Biochem. Pharmacol.55: 1339–1346 (1998).PubMedCrossRefGoogle Scholar
  162. Iuchi S., Weiner L.: Cellular and molecular physiology ofEscherichia coli in the adaptation to aerobic environments.J. Biochem.120, 1055–1063 (1996).PubMedGoogle Scholar
  163. Jäättelä M., Wissing O., Kokholm K., Kallunki T., Egeblad D.: Hsp 70 exerts its anti-apoptotic function downstream of caspase-3-like proteases.EMBO J.21, 6124–6134 (1998).CrossRefGoogle Scholar
  164. Jacobson M.D., Weil M., Raff M.C.: Programmed cell death in animal development.Cell88, 347–354 (1997).PubMedCrossRefGoogle Scholar
  165. Jakubowski W., Bartosz G.: Estimation of oxidative stress inSaccharomyces cerevisiae with fluorescent probes.Internat. J. Biochem. Cell Biol.29, 1297–1301 (1997).CrossRefGoogle Scholar
  166. Jakubowski W., Ertel D., Bilinski T., Kędziora J., Bartosz G.: Luminol luminescence induced by oxidants in antioxidant-deficient veastsS. cerevisiae.Biochem. Mol. Biol. Internat.45, 191–203 (1998).Google Scholar
  167. Jamieson D.J.:Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione.J. Bacteriol.174, 6678–6681 (1992).PubMedGoogle Scholar
  168. Jamieson D.J.: The effect of oxidative stress onSaccharomyces cerevisiae.Redox Report1, 89–95 (1995).Google Scholar
  169. Janda S., Tauchová R.: Cyanide and antimycin A resistant respiration and uptake of 6-deoxy-d-glucose inRhodotorula glutinis.Cell. Mol. Biol.28, 547–553 (1982).PubMedGoogle Scholar
  170. Janda S., Beneš L., Opekarová M., Šťastná J., Tauchová R.: Effect of hydrogen peroxide on the aerobic yeastRhodotorula glutinis.Microbios Lett.43, 37–42 (1990).Google Scholar
  171. Jazwinski S.M.: Replication control and cellular life span.Exp. Gerontol.24, 423–436 (1989).PubMedCrossRefGoogle Scholar
  172. Jazwinski S.M.: Genes of youth: genetics of aging in baker's yeast.ASM News 172–178 (1993).Google Scholar
  173. Jazwinski S.M.: Longevity, genes and aging.Science273, 54–59 (1996).PubMedCrossRefGoogle Scholar
  174. Jensen R.B., Gerdes K.: Programmed cell death in bacteria: protein plasmid stabilization systems.Mol. Microbiol.17, 205–210 (1995).PubMedCrossRefGoogle Scholar
  175. Jimenez Del Rio M., Velez Pardo C., Pinxteren J., De Potter W., Ebinger G., Vauquelin G.: Binding of serotonin and dopamine to “serotonin binding proteins” in bovine frontal cortex: evidence for iron-induced oxidative mechanisms.Eur. J. Pharmacol.15, 11–21 (1993).Google Scholar
  176. Johnson E.A., Levine R.L., Lin C.C.: Inactivation of glycerol dehydrogenase ofKlebsiella pneumoniae and the role of divalent cations.J. Bacteriol.164, 479–483 (1985).PubMedGoogle Scholar
  177. Kaneko T., Tahara S., Matsuo M.: Non-linear accumulation of 8-hydroxy-2-deoxyguanosine, a marker of oxidized DNA damage, during aging.Mutat. Res.316, 277–285 (1996).PubMedGoogle Scholar
  178. Karahalil B., Roldan-Arjona T., Dizdaroglu M.: Substrate specificity ofSchizosaccharomyces pombe Nth protein for products of oxidative DNA damage.Biochemistry37, 590–595 (1998).PubMedCrossRefGoogle Scholar
  179. Karam L.R., Bergtold D.S., Simic M.G.: Biomarkers of radical damagein vivo.Free Radicals Res. Commun.12–13, 11–16 (1991).Google Scholar
  180. Kaur T., Singh S., Dhawan V., Ganguly N.K.:Shigella dysenteriae type 1 toxin induced lipid peroxidation in enterocytes isolated from rabbit ileum.Mol. Cell. Biochem.178, 169–179 (1998).PubMedCrossRefGoogle Scholar
  181. Kawasaki L., Wysong D., Diamond R., Aguire J.: Two divergent catalase genes are differentially regulated duringAspergillus nidulans development and oxidative stress.J. Bacteriol.179, 3284–3292 (1997).PubMedGoogle Scholar
  182. Kell D.B., Kaprelyants A.S., Weichart D.H., Harwood C.R., Barer M.R.: Viability and activity of readily culturable bacteria: a review and discussion of the practical issues.Antonie van Leeuwenhoek73, 169–187 (1998).PubMedCrossRefGoogle Scholar
  183. Kemper M.A., Doyle R.J.: Cell wall ofBacillus subtilis is protonated during growth, pp. 245–252 inBacteria Growth and Lysis (E.M. de Pedro, Ed.), Plenum Press, New York 1993.Google Scholar
  184. Kemper M.A., Urrutia M.M., Beveridge T.J., Koch A.L., Doyle R.J.: Proton motive force may regulate cell wall-associated enzymes ofBacillus subtilis.J. Bacteriol.175, 5690–5696 (1993).PubMedGoogle Scholar
  185. Kennedy B.K., Austriaco N.R. Jr.,Zhang J., Guarente L.: Mutation in the silencing gene SIR4 can delay aging inS. cerevisiae.Cell80, 485–496 (1995).PubMedCrossRefGoogle Scholar
  186. Khan A.U., Kasha M.: Singlet molecular oxygen in the Haber-Weiss reaction.Proc. Nat. Acad. Sci. USA91, 12365–12367 (1994).PubMedCrossRefGoogle Scholar
  187. Khan A.U., Wilson T.: Reactive oxygen species as cellular messengers.Chem. Biol.2, 437–445 (1995).PubMedCrossRefGoogle Scholar
  188. Kim I.S., Stiefel A., Plantör S., Angerer A., Braun V.: Transcription induction of the ferric citrate transport genesvia the N-terminus of the FecA outer membrane protein, the Ton system and the electrochemical potential of the cytoplasmic membrane.Mol. Microbiol.23, 333–344 (1997).PubMedCrossRefGoogle Scholar
  189. Kirkland J.B.: Lipid peroxidation, protein thiol oxidation and DNA damage in hydrogen peroxide-induced injury to endothelial cells: role of activation of poly(ADP-ribose) polymerase.Biochim. Biophys. Acta1092, 319–325 (1991).PubMedCrossRefGoogle Scholar
  190. Klebanoff S.J., Waltersdorph A.M., Michel B.R., Rosen H.: Oxygen-based free radical generation by ferrous ions and desferrioxamine.J. Biol. Chem.264, 19765–19771 (1989).PubMedGoogle Scholar
  191. Krems B., Charizanis C., Entian K-D.: The response regulator-like protein Pos9/Skn7 ofSaccharomyces cerevisiae is involved in oxidative stress resistance.Curr. Genet.29, 327–334 (1996).PubMedGoogle Scholar
  192. Kretschmer S.: Reversion sporulierenderBacillus megaterium-Zellen zum Wachstum.Z. Allg. Mikrobiol.12, 459–467 (1972).PubMedCrossRefGoogle Scholar
  193. Kroemer G., Zamzami N., Susin S.A.: Mitochondrial control of apoptosis.Immunol. Today18, 44–51 (1997).PubMedCrossRefGoogle Scholar
  194. Kučerová H., Chaloupka J.: Intracellular serine proteinase behaves as a heat-stress protein in nongrowing but as a cold-stress protein in growing populations ofBacillus megaterium.Curr. Microbiol.31, 39–43 (1995).PubMedCrossRefGoogle Scholar
  195. Lahiri B., Lai P.S., Pousada M., Stanton D., Danishefsky I.: Depolymerization of heparin by complexed ferrous ions.Arch. Biochem. Biophys.293, 54–60 (1992).PubMedCrossRefGoogle Scholar
  196. Lapshina E.A., Jaruga E., Bilinski T., Bartosz G.: What determines the antioxidant potential of yeast cells?Biochem. Mol. Biol. Internat.37, 903–908 (1995).Google Scholar
  197. Laval J.: Role of DNA repair enzymes in the cellular resistance to oxidative stress.Pathol. Biol.44, 14–24 (1996).PubMedGoogle Scholar
  198. Lawrence G.D.: Ethylene formation from methionine and its analogs, pp. 157–163 inCRC Handbook for Oxygen Radical Research (R.A. Greenwald, Ed.), CRC Press, Boca Raton 1985.Google Scholar
  199. Lee C.L., Kang S.O.:d-erythro-Ascorbic acid is an important antioxidant molecule inS. cerevisiae.Mol. Microbiol.30, 895–903 (1999).Google Scholar
  200. Lee J.K., Kim J.M., Kim S.W., Nam Doo Hyun, Yong C.S., Huh K.: Effect of copper ion on oxygen damage in superoxide dismutase-deficientS. cerevisiae.Arch. Pharm. Res.19, 178–182 (1996).Google Scholar
  201. Lehmann Y., Meile L., Teuber M.: Rubrerythrin fromClostridium perfringens: cloning of the gene, purification of the protein, and characterization of its superoxide-dismutase function.J. Bacteriol.178, 7152–7158 (1996).PubMedGoogle Scholar
  202. Leke N., Grenier D., Goldner M., Mayrand D.: Effect of hydrogen peroxide on growth and selected properties ofPorphyromonas gingivalis.FEMS Microbiol. Lett.174, 347–353 (1999).PubMedCrossRefGoogle Scholar
  203. Lessuise E., Simon M., Klein R., Labbe P.: Excretion of anthranilate and 3-hydroxyanthranilate byS. cerevisiae: relationship to iron metabolism.J. Gen. Microbiol.138, 85–89 (1992).Google Scholar
  204. Lessuise E., Simon-Casteras M., Labbe P.: Siderophore-mediated iron uptake inS. cerevisiae: theSST1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily.Microbiology (UK)144, 3455–3462 (1998).Google Scholar
  205. Lesuisse E., Simon M., Klein R., Labbe P.: Excretion of anthranilate and 3-hydroxyanthranilate byS. cerevisiae: relationship to iron metabolism.J. Gen. Microbiol.138, 85–89 (1992).PubMedGoogle Scholar
  206. Levin J.D., Johnson A.W., Demple B.: HomogeneousEscherichia coli endonuclease IV.J. Biol. Chem.236, 8066–8071 (1988).Google Scholar
  207. Levine A., Tenkaken R., Dixon R., Lamb C.: H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistant response.Cell79, 583–593 (1994).PubMedCrossRefGoogle Scholar
  208. Levine R.L., Oliver C.N., Fulks R.M., Stadtman E.R.: Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.Proc. Nat. Acad. Sci. USA78, 2120–2124 (1981).PubMedCrossRefGoogle Scholar
  209. Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shaltiel S., Stadtman E.R.: Determination of carbonyl content in oxidatively modified proteins.Meth. Enzymol.186, 464–478 (1990).PubMedCrossRefGoogle Scholar
  210. Levine R.L., Berlett B.S., Moskowitz J., Mosoni L., Stadtman E.R.: Methionine residues may protect proteins from critical oxidative damage.Mechan. Ageing Develop.107, 323–332 (1999).CrossRefGoogle Scholar
  211. Li B., Gutierrez P.L., Blough N.V.: Trace determination of hydroxyl radical using fluorescence detection.Meth. Enzymol.300, 202–216 (1999).PubMedGoogle Scholar
  212. Li L., Kaplan J.: Characterization of two homologous yeast genes that encode mitochondrial iron transporters.J. Biol. Chem.272, 28485–28493 (1997).PubMedCrossRefGoogle Scholar
  213. Liebler D.C., Stratton S.P., Kaysen K.L.: Antioxidant actions of β-carotene in liposomal and microsomal membranes: role of carotenoid-membrane incorporation and α-tocopherol.Arch. Biochem. Biophys.338, 244–250 (1997).PubMedCrossRefGoogle Scholar
  214. Ligr M., Madeo F., Fröhlich E., Hilt W., Fröhlich K.-U., Wolf D.: Mammalian Bax triggers apoptotic changes in yeast.FEBS Lett.438, 61–65 (1998).PubMedCrossRefGoogle Scholar
  215. Lin Y.J., Seroude L., Benzer S.: Extended life-span and stress resistance in theDrosophila mutant methuselah.Science282, 943–946 (1998).PubMedCrossRefGoogle Scholar
  216. Liu C.-J., Chopra A.K., Strnadová M., Chaloupka J.: Degradation of abnormal proteins in growing yeast.FEMS Microbiol. Lett.21, 313–317 (1984).CrossRefGoogle Scholar
  217. Liu S.: Generating, partitioning, targeting and functioning of superoxide in mitochondria.Biosci. Rep.17, 259–272 (1997).PubMedCrossRefGoogle Scholar
  218. Ljungquist S., Lindahl T., Howard-Flanders P.: Methylmethanesulfonate-sensitive mutant ofEscherichia coli deficient in endonuclease specific for apurinic sites in deoxyribonucleic acid.J. Bacteriol.126, 646–653 (1976).PubMedGoogle Scholar
  219. Longo V.D., Gralla E.B., Valentine J.S.: Superoxide dismutase activity is essential for stationary phase survival inSaccharomyces cerevisiae. Mitochondrial production of toxic oxygen speciesin vivo.J. Biol. Chem.271, 12275–12280 (1996).PubMedCrossRefGoogle Scholar
  220. Longo V.D., Ellerby L.N., Bredesen D.E., Valentine J.S., Gralla E.B.: Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast.J. Cell Biol.137, 1581–1588 (1997).PubMedCrossRefGoogle Scholar
  221. Longo V.D., Liou L.-L., Valentine J.S., Gralla E.B.: Mitochondrial superoxide decreases yeast survival in stationary phase.Arch. Biochem. Biophys.365, 131–142 (1999).PubMedCrossRefGoogle Scholar
  222. Lowett C.M. Jr.,O'Gara T.M., Woodruff J.N.: Analysis of the SOS inducing signal inBacillus subtilis usingEscherichia coli LexA as a probe.J. Bacteriol.176, 4914–4923 (1994).Google Scholar
  223. Lundquist H., Dahlgren C.: Isoluminol-enhanced chemiluminescence: a sensitive method to study the release of superoxide anion from human neutrophils.Free Radicals Biol. Med.20, 785–792 (1996).CrossRefGoogle Scholar
  224. Lupo S., Aranda C., Miranda-Ham L., Olivera H., Riego L., Servin L., González A.: Tyrosine is involved in protection from oxidative stress inS. cerevisiae.Can. J. Microbiol.43, 963–970 (1997).PubMedGoogle Scholar
  225. Luzzatto E., Cohen H., Stockheim C., Wieghardt K., Meyerstein D.: Reactions of low valent transition metal complexes with hydrogen peroxide. Are they “Fenton-like” or not?Free Radicals Res.23, 453–463 (1995).CrossRefGoogle Scholar
  226. Lynch M.C., Kuramitsu H.K.: Role of superoxide dismutase in physiology ofPorphyromonas gingivalis.Infect. Immun.67, 3367–3375 (1999).PubMedGoogle Scholar
  227. Madeo F., Fröhlich E., Fröhlich K.-U.: A yeast mutant showing diagnostic markers of early and late apoposis.J. Cell Biol.139, 729–734 (1997).PubMedCrossRefGoogle Scholar
  228. Madeo F., Fröhlich E., Ligr M., Grey M., Sigrist S.J., Wolf D.H.: Oxygen stress: a regulator of apoptosis in yeast.J. Cell Biol.145, 757–767 (1999).PubMedCrossRefGoogle Scholar
  229. Marcillat O., Zhang Y., Lin S.W., Davies K.J.A.: Mitochondria contain a proteolytic system which can recognize and degrade oxidatively-denatured proteins.Biochem. J.254, 677–683 (1988).PubMedGoogle Scholar
  230. Marquis R.E., Sim J., Shin S.Y.: Molecular mechanisms of resistance to heat and oxidative damage.J. Appl. Bacteriol.76, 40S-48S (1994).Google Scholar
  231. Mason C.A., Hamer G., Bryers J.D.: The death and lysis of microorganisms in environmental processes.FEMS Microbiol. Rev.39, 373–401 (1986).CrossRefGoogle Scholar
  232. Mason R.P.:In vitro andin vivo detection of free radical metabolites with electron spin resonance, pp. 11–24 inFree Radicals: A Practical Approach (N.A. Punchard, F.J. Kelly, Eds). Oxford University Press, Oxford 1996.Google Scholar
  233. Mason R.P.: Electron spin resonance investigations of free radical toxicology, pp. 1–27 inFree Radicals in Biology and Environment (F. Minisci, Ed.). Kluyver Academic Publishers, Dordrecht-Boston-London 1997.Google Scholar
  234. McKenna W.R., Mickelsen P.A., Sparling P.F., Dyer D.W.: Iron uptake from lactoferrin and transferrin byNeisseria gonorrhoeae.Infect. Immun.56, 785–791 (1988).PubMedGoogle Scholar
  235. Meriin A.B., Yaglom J.A., Gabai V., Mosser D.D., Zon L., Sherman M.Y.: Protein-damaging stress activates c-Jun N-terminal kinasevia inhibition of its dephosphorylation: a novel pathway controlled by HSP72.Mol. Cell Biol.19, 2547–2555 (1999).PubMedGoogle Scholar
  236. Michaels M.L., Miller J.H.: The GO system protects organisms from the mutagenic effects of the spontaneous lesion 8-hydroxy-guanine (7,8-dihydro-8-oxoguanine).J. Bacteriol.174, 6321–6325 (1992).PubMedGoogle Scholar
  237. Mignotte B., Wayssiere J.-L.: Mitochondria and apoptosis.Eur. J. Biochem.252, 1–15 (1998).PubMedCrossRefGoogle Scholar
  238. Mishra O.P., Delivoria-Papadopoulos M., Cahillane G., Wagerle L.C.: Lipid peroxidation as the mechanism of modification of the affinity of the Na+, K+-ATPase active sites for ATP, K+, Na+, and strophanthidinin vitro.Neurochem. Res.14, 845–851 (1989).PubMedCrossRefGoogle Scholar
  239. Miyake T., Hazu T., Yoshida S., Kanayama M., Tomochika K., Shinoda S., Ono B.: Glutathione transport systems of the budding yeastS. cerevisiae.Biosci. Biotechnol. Biochem.62, 1858–1864 (1998).PubMedCrossRefGoogle Scholar
  240. Mlakar A., Spiteller G.: 2-Hydroxysuccinaldehyde, a lipid peroxidation product proving that polyunsaturated fatty acids are able to react with three molecules of oxygen.Free Radicals Res.26, 57–62 (1997).Google Scholar
  241. Mohr S., Zech B., Lapetina E.G., Grüne B.: Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide.Biochem. Biophys. Res. Commun.238 387–391 (1997).PubMedCrossRefGoogle Scholar
  242. Moore M.M., Breedveld M.W., Autor A.P.: The role of carotenoids in preventing oxidative damage in the pigmented yeast,Rhodotorula mucilaginosa.Arch. Biochem. Biophys.270, 419–431 (1989).PubMedCrossRefGoogle Scholar
  243. Moore C.H., Foster L.-A., Gerbig D.G., Dyer D.W., Gibson B.W.: Identification of alcaligin as the siderophore produced byBordetella pertussis andBordetella bronchiseptica.J. Bacteriol.117, 1116–1118 (1995).Google Scholar
  244. Moradas-Ferreira P., Costa V., Piper P., Mager W.: The molecular defenses against reactive oxygen species in yeast.Mol. Microbiol.19, 651–658 (1996).PubMedCrossRefGoogle Scholar
  245. Nash H.M., Brunner S.D., Scharer O.D., Kawate T., Addona T.A., Spooner E., Lane W.S., Verdine G.L.: Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily.Curr. Biol.6, 968–980 (1996).PubMedCrossRefGoogle Scholar
  246. Nebe-von Caron G., Stephens P., Badley R.A.: Assessment of bacterial viability status by flow cytometry and single cell sorting.J. Appl. Microbiol.84, 988–998 (1998).CrossRefGoogle Scholar
  247. Newcomb T.G., Loeb L.A.: Oxidative DNA damage and mutagenesis, pp. 65–84 inDNA Damage and Repair, Vol. I. DNA Repair in Prokaryotes and Lower Eukaryotes (J.A. Nickoloff, M.F. Hoekstra, Eds) Humana Press, Fotowa (NJ) 1998.Google Scholar
  248. Niki E.: Free radical initiators as source of water- or lipid-soluble peroxyl radicals.Meth. Enzymol.186, 100–108 (1990).PubMedGoogle Scholar
  249. Niven G.W., Mulholland F.: Cell membrane integrity and lysis inLactobacillus lactis: the detection of a population of permeable cells in post-logarithmic phase cultures.J. Appl. Microbiol.84, 90–96 (1998).PubMedCrossRefGoogle Scholar
  250. Noguchi N., Yamashita H., Gotoh, N., Yamamoto Y., Numano R., Niki E.: 2,2′-Azobis(4-methoxy-2,4-dimethylvaleronitrile), a new soluble azo initiator: application to oxidations of lipids and low-density lipoprotein in solution and in aqueous dispersions.Free Radicals Biol. Med.24, 259–268 (1997).CrossRefGoogle Scholar
  251. Nordmann R., Ribière C., Rouach H.: Ethanol-induced lipid peroxidation and oxidative stress in extrahepatic tissues.Alcohol & Alcoholism25, 231–237 (1990).Google Scholar
  252. Nyström T.: To be or not to be: the ultimate decision of the growth-arrested bacterial cell.FEMS Microbiol. Rev.21, 283–290 (1998).CrossRefGoogle Scholar
  253. Ohsumi Y., Kitamoto K., Anraku Y.: Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion.J. Bacteriol.170, 2676–2682 (1988).PubMedGoogle Scholar
  254. Okada S., Zhang H., Hatano M., Tokuhisa T.: A physiological role of Bcl-x(L) induced in activated macrophages.J. Immunol.160, 2590–2596 (1998).PubMedGoogle Scholar
  255. Olie R.A., Durrieu F., Cornillon S., Longran G., Gross J., Earnshow W.C., Goldstein P.: Apparent caspase independence of programmed cell death inDictyostelium.Curr. Biol.8, 955–958 (1998).PubMedCrossRefGoogle Scholar
  256. Oliver C.N., Levine R.E., Stadtman E.R.: A role of mixed-function oxidation reactions in the accumulation of altered enzyme forms during aging.J. Amer. Geriatrics Soc.35, 947–956 (1987).Google Scholar
  257. Osiewacz H.D.: Genetic regulation of aging.J. Mol. Med.75, 715–727 (1997).PubMedCrossRefGoogle Scholar
  258. Ou P.M., Tritchler H.J., Wolff S.P.: Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant.Biochem. Pharmacol.50, 123–126 (1995).PubMedCrossRefGoogle Scholar
  259. Pahl H.L., Baeuerle P.A.: Oxygen and control of gene expression.Bioassays16, 497–502 (1994).CrossRefGoogle Scholar
  260. Palop A., Rutherford G.C., Marquis R.E.: Inactivation of enzymes within spores ofBacillus megaterium ATCC 19213 by hydroperoxides.Can. J. Microbiol.44, 465–470 (1998).PubMedCrossRefGoogle Scholar
  261. Papa S., Guerrieri F., Capitanio N.: A possible role of slips in cytochrome-c oxidase in the antioxygen defense system of the cell.Biosci. Rep.17, 23–31 (1997).PubMedCrossRefGoogle Scholar
  262. Patel M.P., Marcinkeviciene J., Blanchard J.S.:Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric O2 conditions.FEMS Microbiol. Lett.166, 155–163 (1998).PubMedCrossRefGoogle Scholar
  263. Pedersen K., Gerdes K.: Multiple hok genes on the chromosome ofEscherichia coli Mol. Microbiol.32, 1090–1102 (1992).CrossRefGoogle Scholar
  264. Perego P., Howell S.B.: Molecular mechanisms controlling sensitivity to toxic metal ions in yeast.Toxicol. Appl. Pharmacol.147, 312–318 (1997).PubMedCrossRefGoogle Scholar
  265. Petit P.X., Susin S.-A., Zamzami N., Mignotte B., Kroemer G.: Mitochondria and cell death: back to the future.FEBS Lett.396, 7–13 (1996).PubMedCrossRefGoogle Scholar
  266. Postgate J.R., Hunter J.R.: The survival of starved bacteria.J. Gen. Microbiol.29, 233–263 (1962).PubMedGoogle Scholar
  267. Pressler U., Staudenmaier H., Zimmermann L., Braun V.: genetics of the iron dicitrate transport system ofEscherichia coli.J. Bacteriol.170, 2716–2724 (1988).PubMedGoogle Scholar
  268. Pushkareva M., Obeid L.M., Hannum Y.A.: Ceramide: an endogenous regulator of apoptosis and growth suppression.Immunol. Today.16, 294–297 (1995).PubMedCrossRefGoogle Scholar
  269. Raguzzi F., Lessuise E., Crichton R.R.: Iron storage inS. cerevisiae.FEBS Lett.231, 253–258 (1988).PubMedCrossRefGoogle Scholar
  270. Rice-Evans C.A., Diplock A.T., Symoss M.C.R.:Tech. Free Radical Research. pp. 207–234. Elsevier, Amsterdam-London-New York-Tokyo 1991.Google Scholar
  271. Rice-Evans C., Sampson J., Bramley P.M., Holloway D.E.: Why do we expect carotenoids to be antioxidantsin vivo?Free Radicals Res.26, 381–398 (1997).CrossRefGoogle Scholar
  272. Ridgley E., Xiong Z., Ruben L.: Reactive oxygen species activate a Ca2+-dependent cell death pathway in the unicellular organismTrypanosoma brucei.Biochem. J.340, 33–40 (1999).PubMedCrossRefGoogle Scholar
  273. Rikans L.E., Hornbrook K.R.: Lipid peroxidation, antioxidant protection and aging.Biochim. Biophys. Acta1362, 116–127 (1997).PubMedGoogle Scholar
  274. Rocha E.R., Selby T., Coleman J.P., Smith C.J.: Oxidative stress response in an anaerobe,Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide.J. Bacteriol.178, 6895–6903 (1996).PubMedGoogle Scholar
  275. Rocha E.R., Smith C.J.: Regulation ofBacteroides fragilis katB mRNA by oxidative stress and carbon limitation.J. Bacteriol.179, 7033–7039 (1997).PubMedGoogle Scholar
  276. Rocha E.R., Smith C.J.: Characterization of a peroxide-resistant mutant of the anaerobic bacteriumBacteroides fragilis.J. Bacteriol.180, 5906–5912 (1998).PubMedGoogle Scholar
  277. Roldan-Arjona T., Anselmino C., Lindahl T.: Molecular cloning and functional analysis of aSchizosaccharomyces pombe homologue ofEscherichia coli endonuclease III.Nucl. Acids Res.24, 3307–3312 (1996).PubMedCrossRefGoogle Scholar
  278. Roze L.V., Linz J.E.: Lovastain triggers an apoptosis-like cell death in the fungusMucor racemosus.Fungal Genet. Biol.25, 119–133 (1998).PubMedCrossRefGoogle Scholar
  279. Sakagami H., Kuribayashi N., Iida M., Hagiwara T., Takahashi H., Yoshida H., Shiota F., Ohata H., Momose K., Takeda M.: The requirement for and mobilization of calcium during induction by sodium ascorbate and by hydrogen peroxide of cell death.Life Sci.58, 1131–1138 (1996).PubMedCrossRefGoogle Scholar
  280. Sakamoto T., Delgaizo V.B., Bryant D.A. Growth on urea can trigger death and peroxidation of the cyanobacteriumSynechococcus sp. strain PC 7002.Appl. Environ. Microbiol.64, 2361–2366 (1998).PubMedGoogle Scholar
  281. Santiago L.A., Mori A.: Antioxidant defenses of baker's yeast against free radicals and lipid peroxides in rat brain.Arch. Biochem. Biophys.306, 16–21 (1993).PubMedCrossRefGoogle Scholar
  282. Santos-Ocana C., Córdoba F., Crane F.L., Clarke C.F., Navas P.: Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane ofS. cerevisiae.J. Biol. Chem.273, 8099–8105 (1998).PubMedCrossRefGoogle Scholar
  283. Saran M., Bors W.: Direct and indirect measurements of oxygen radicals.Klin. Wochenschr.69, 957–964 (1991).PubMedCrossRefGoogle Scholar
  284. Saran M., Michel C., Bors W.: Radical functionsin vivo: a critical review of current concepts and hypothesesZ. Naturforsch.53c, 210–227 (1998).Google Scholar
  285. Schroeder W.A., Johnson E.A.: Antioxydant role of carotenoids inPhaffia rhodozyma.J. Gen. Microbiol.139, 907–912 (1993).Google Scholar
  286. Schubert J., Wilmer J.W.: Does hydrogen peroxide exist “free” in biological systems?Free Radicals Biol. Med.11 545–555 (1991).CrossRefGoogle Scholar
  287. Sen S.: Programmed cell death: concept, mechanism and control.Biol. Rev.67, 287–319 (1992).PubMedCrossRefGoogle Scholar
  288. Shaham S., Schuman M.A., Herskowitz I.: Death-defying yeast identify novel apoptosis genes.Cell92, 425–427 (1998).PubMedCrossRefGoogle Scholar
  289. Shamsi F.A., Hadi S.M.: Photoinduction of strand scission in DNA by uric acid and Cu(II).Free Radicals Biol. Med.19, 189–196 (1995).CrossRefGoogle Scholar
  290. Shen B., Jensen R.G., Bohnert H.J.: Mannitol protects against oxidation by hydroxyl radicals.Plant Physiol.115, 527–532 (1997).PubMedGoogle Scholar
  291. Siegele D.A., Kolter R.: Life after log.J. Bacteriol.174, 345–348 (1992).PubMedGoogle Scholar
  292. Sies H.: Biochemistry of oxidative stress.Angew. Chem. Internat. Edn. Engl.25, 1058–1071 (1986).CrossRefGoogle Scholar
  293. Sies H.:Oxidative Stress: Oxidants and Antioxidants. Academic Press, London 1993.Google Scholar
  294. Sies H.: Impaired endothelial and smooth muscle cell function in oxidative stress.Exp., Physiol.82, 291–295 (1997).Google Scholar
  295. Sigler K., Gille G.: Stability and refractoriness of the high catalase activity in the oxidative-stress-resistant fission yeastSchizosac-charomyces pombe Folia Microbiol.43, 369–372 (1998).Google Scholar
  296. Sigler K., Gille G., Vacata V., Stadler N., Höfer M.: Inactivation of the plasma membrane ATPase ofSchizosaccharomyces pombe by hydrogen peroxide and by the Fenton reagent (Fe2+/H2O2): nonradicalvs. radical-induced oxidation.Folia Microbiol.43, 361–367 (1998a).Google Scholar
  297. Sigler K., Denksteinová B., Gášková D., Stadler N., Radovanović N., Höfer M.: Effect of stressors on yeast plasma membrane integrity, proton gradient and H+-ATPase function.Folia Microbiol.43, 229–230 (1998b).Google Scholar
  298. Simizu S., Takada M., Umezawa K., Imoto M.: Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs.J. Biol. Chem.273, 26900–26907 (1998).PubMedCrossRefGoogle Scholar
  299. Sinclair D.A., Mills K., Guarente L.: Molecular mechanisms of yeast aging.Trends Biochem. Sci.23, 131–134 (1998).PubMedCrossRefGoogle Scholar
  300. Skoneczny M., Chelstowska A., Rytka J.: Study of the coinduction by fatty acids of catalase A and acyl-CoA oxidase in standard and mutantS. cerevisiae strains.Eur. J. Biochem.174, 297–302 (1988).PubMedCrossRefGoogle Scholar
  301. Skulachev V.P.: Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell.FEBS Lett.397, 7–10 (1996).PubMedCrossRefGoogle Scholar
  302. Skulachev V.P.: Cytochromec in the apoptotic and antioxidant cascades.FEBS Lett.423, 275–280 (1998).PubMedCrossRefGoogle Scholar
  303. Smirnoff N.: The function and metabolism of ascorbic acid in plants.Ann. Bot.78, 661–669 (1996).CrossRefGoogle Scholar
  304. Smith D.W., Hanawalt P.C.: Macromolecular synthesis and thymineless death inMycoplasma laidlawii B.J. Bacteriol96, 2066–2076 (1968).PubMedGoogle Scholar
  305. Smith J.R., Pereira-Smith O.M.: Replicative senescence.: implications forin vivo aging and tumor suppression.Science273, 63–67 (1996).PubMedCrossRefGoogle Scholar
  306. Sohal R.S., Allen R.G.: Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis.Exp. Gerontol25, 499–522 (1990).PubMedCrossRefGoogle Scholar
  307. Sohal R.S., Weindruch R.: Oxidative stress, caloric restriction and aging.Science273, 59–63 (1996).PubMedCrossRefGoogle Scholar
  308. Soszyński M., Bartosz G.: Decrease in accessible thiols as an index of oxidative damage to membrane proteins.Free Radicals Biol. Med.23, 463–469 (1997).CrossRefGoogle Scholar
  309. Stadtman E.R.: Oxidation of proteins by mixed function oxidation systems: implication in protein turnover, aging and neutrophil function.Trends Biochem. Sci.11, 11–12 (1986).CrossRefGoogle Scholar
  310. Stadtman E.R.: Protein oxidation and aging.Science257, 1220–1224 (1992).PubMedCrossRefGoogle Scholar
  311. Stahl W., Sies H.: Antioxidant defense: vitamins E and C and carotenoids.Diabetes46 (Suppl. 2), S14-S17 (1997).PubMedGoogle Scholar
  312. Stephen D.W.S., Jamieson D.J.: Glutathione is an important antioxidant molecule in the yeastS. cerevisiae.FEMS Microbiol. Lett.141, 207–212 (1996).PubMedCrossRefGoogle Scholar
  313. Stephens C.: Bacterial sporulation: a question of commitment?Curr. Biol.8, R45-R48 (1998).PubMedCrossRefGoogle Scholar
  314. Stewart E.J., Aslund F., Beckwith J.: Disulfide bond formation in theEscherichia coli cytoplasm: anin vivo role reversal for the thioredoxins.EMBO J.17, 5543–5550 (1998).PubMedCrossRefGoogle Scholar
  315. Stewart M.C., Olson B.H: Physiological studies of chloramine resistance developed byKlebsiella pneumoniae under low-nutrient growth conditions.Appl. Environ. Microbiol.58, 2918–2927 (1992).PubMedGoogle Scholar
  316. Storz G., Tartaglia L.A., Farr S.B., Ames B.N.: Bacterial defences against oxidative stress.Trends Genet.6, 363–368 (1990).PubMedCrossRefGoogle Scholar
  317. Streiblová E.: Study of scar formation in the life cycle of heterothallicSaccharomyces cerevisiae.Can. J. Microbiol.16, 827–831 (1970).PubMedCrossRefGoogle Scholar
  318. Strnadová M., Votruba J., Chaloupka J.: Turnover kinetics of proteins labeled in different sporulation phases ofBacillus megaterium.Folia Microbiol.37, 163–168 (1992).Google Scholar
  319. Suzuki Y.J., Edmondson J.D., Ford G.D.: Inactivation of rabbit muscle creatine kinase by hydrogen peroxide.Free Radicals Res. Commun.16, 131–136 (1992).CrossRefGoogle Scholar
  320. Taborsky G.: Oxidative modification of proteins in the presence of ferrous ion and air. Effect of ionic constituents of the reaction medium on the nature of the oxidation products.Biochemistry12, 1341–1348 (1973).PubMedCrossRefGoogle Scholar
  321. Takeuchi T., Nakaya Y., Kato N., Watanabe K., Morimoto K.: Induction of oxidative DNA damage in anaerobes.FEBS Lett.450, 178–180 (1999).PubMedCrossRefGoogle Scholar
  322. Tamarit J., Cabiscol E., Ros J.: Identification of the major oxidatively damaged proteins inEscherichia coli cells exposed to oxidative stress.J. Biol. Chem.273, 3027–3032 (1998).PubMedCrossRefGoogle Scholar
  323. Tanioka S., Matsui Y., Irie T., Tanigawa T., Tanaka Y., Shibata H., Sawa Y., Kono Y.: Oxidative depolymerization of chitosan by hydroxyl radical.Biosci. Biotech. Biochem.60, 2001–2004 (1996).CrossRefGoogle Scholar
  324. Tao W., Kurschner C., Morgan J.I.: Modulation of cell death in yeast by the Bcl-2 family of proteins.J. Biol. Chem.272, 15547–15552 (1997).PubMedCrossRefGoogle Scholar
  325. Tesoriere L., Bongiorno A., Pintaudi A.M., Anna R.D., Arpa D.D., Livrea, M.A.: Synergistic interactions between vitamin A and vitamin E against lipid peroxidation in phosphatidylcholine liposomes.Arch. Biochem. Biophys.326, 57–63 (1996).PubMedCrossRefGoogle Scholar
  326. Thomas D., Scott A.D., Barbey R., Padula M., Boiteux S.: Inactivation ofOGGI increases incidence of GC-TA transversions inSaccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells.Mol. Gen. Genet.254, 171–178 (1997).PubMedCrossRefGoogle Scholar
  327. Toledo I., Aguirre J., Hansberg W.: Enzyme inactivation related to a hyperoxidant stage during conidiation ofNeurospora crassa.Microbiology (UK)140, 2391–2397 (1994).Google Scholar
  328. Toledo I., Hansberg W.: Protein oxidation related to morphogenesis inNeurospora crassa.Exp. Mycol.14, 184–189 (1990).CrossRefGoogle Scholar
  329. Tsuchihashi H., Kigoshi M., Iwatsuki M., Niki E.: Action of β-carotene as an oxidant against lipid peroxidation.Arch. Biochem. Biophys.323, 137–147 (1995).PubMedCrossRefGoogle Scholar
  330. Tsujimoto Y.: Apoptosis and necrosis: intracellular ATP levels as a determinant for cell death modes.Cell Death Different4, 429–434 (1997).CrossRefGoogle Scholar
  331. Uchida K., Kawakishi S.: Oxidative degradation of β-cyclodextrin induced by an ascorbic acid-copper ion system.Agric. Biol. Chem.50, 367–373 (1986a).Google Scholar
  332. Uchida K., Kawakishi S.: Oxidative depolymerization of polysaccharides induced by the ascorbic acid-copper ion systems.Agric. Biol. Chem.50, 2579–2583 (1986b).Google Scholar
  333. Váchová L., Kučerová H., Benešová J., Chaloupka J.: Heat and osmotic stress enhance the development of cytoplasmic serine proteinase activity in sporulatingBacillus megaterium.Biochem. Mol. Biol. Internat.32, 1049–1057 (1994).Google Scholar
  334. Valentine J.S., Wertz D.L., Lyons T.J., Liou L.-L., Goto J.J., Gralla E.B.: The dark side of dioxygen biochemistry.Curr. Opinion Chem. Biol.2, 253–262 (1998).CrossRefGoogle Scholar
  335. Van Acker S.A.B.E., van den Berg D.-J., Tromp M.N.J.L., Griffioden D.H, van Bennekom W.P., van der Vugh W.J.F., Bast A.: Structural aspects of antioxidant activity of flavonoids.Free Radicals Biol. Med.20, 331–342 (1996).CrossRefGoogle Scholar
  336. Van der Kemp P.A., Thomas D., Barbey R., De Oliveira, R., Boiteux S.: Cloning and expression inEscherichia coli of theOGG1 gene ofSaccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine.Proc. Nat. Acad. Sci. USA93, 5197–5202 (1996).PubMedCrossRefGoogle Scholar
  337. Vile G.F., Rothwell L.A., Kettle A.J.: Hypochlorous acid activates the tumor suppressor protein p53 in cultured human skin fibroblasts.Arch. Biochem. Biophys.359 51–56 (1998).PubMedCrossRefGoogle Scholar
  338. Visick J.E., Clarke S.: Repair, refold, recycle: how bacteria can deal with spontaneous and environmental damage to proteins.Mol. Microbiol.16, 835–845 (1995).PubMedCrossRefGoogle Scholar
  339. Wang J.Y.J.: Cellular responses to DNA damage.Curr. Opin. Cell. Biol.10, 240–247 (1998).PubMedCrossRefGoogle Scholar
  340. Wei Y.-H.: Oxidative stress and mitochondrial DNA mutation in human aging.Proc. Soc. Exp. Biol. Med.217, 53–63 (1998).PubMedGoogle Scholar
  341. Weiss, B.: Endonuclease II ofEscherichia coli is exonuclease III.J. Biol. Chem.251, 1896–1901 (1976).PubMedGoogle Scholar
  342. Welburg S.C., Barcinski N.A., Williams G.T.: Programmed cell death in trypanosomatides.Parasitol. Today13, 22–25 (1997).CrossRefGoogle Scholar
  343. West S.C.: Enzymes and molecular mechanisms of genetic recombination.Ann. Rev. Biochem.61, 603–640 (1992).PubMedCrossRefGoogle Scholar
  344. West W.: Introductory survey of molecular spactra, p. 37 in W. West (Ed.):Technique in Organic Chemistry, Vol. 9. Chemical Applications of Spectroscopy. Interscience Publishers, New York-London 1956.Google Scholar
  345. Willie A.H.: Apoptosis and carcinogenesis.,Eur. J. Cell Biol.73, 189–197 (1997).Google Scholar
  346. Winterbourn C.C.: Toxicity of iron and hydrogen peroxide: the Fenton reaction.Toxicol. Lett.82–83, 969–974 (1995).PubMedCrossRefGoogle Scholar
  347. Wiśnicka R., Krzepilko A., Wawryn J., Krawiec Z., Biliński T.: Protective role of superoxide dismutase in iron toxicity in yeast.Biochem. Mol. Biol. Internat.44, 635–641 (1998).Google Scholar
  348. Wolff S.P., Dean R.T.: Glucose autoxidation and protein modification.Biochem. J.245, 243–250 (1987).PubMedGoogle Scholar
  349. Wright N.E., Han D.K., Carter L., Fields S., Schwartz S.M., Hockenbery D.M.: Caspase-3 inhibits growth ofSaccharomyces cerevisiae without causing cell death.FEBS Lett.446, 9–14 (1999).PubMedCrossRefGoogle Scholar
  350. Xu Z.U., Wickner W.: Thioredoxin is required for vacuole inheritance inS. cerevisiae.J. Cell Biol.132, 787–794 (1996).PubMedCrossRefGoogle Scholar
  351. Xu C., Zhou T., Kuroda M., Rosen B.P.: Metalloid resistance mechanism in prokaryotes.J. Biochem.123, 16–23 (1998).PubMedGoogle Scholar
  352. Yamano S., Maruyama T.: An azide-insensitive superoxide dismutase from a hyperthermophilic archeon,Sulfobolus solfatarius.J. Biochem.125, 186–193 (1999).PubMedGoogle Scholar
  353. Yang M.-H., Schaich K.M.: Factors affecting DNA damage caused by lipid hydroperoxides and aldehydes.Free Radicals Biol. Med.20, 225–236 (1996).CrossRefGoogle Scholar
  354. Yao Y., Yin D., Jas G.S., Kuczera K., Williams T.D., Schöneich H.C., Squier T.C.: Oxidative modification of a carbonyl-teminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase.Biochemistry35, 2767–2787 (1996).PubMedCrossRefGoogle Scholar
  355. Yin Y., Terauchi Y., Solomon G.G., Aizawa S., Rangarian P.N., Yazaki Y., Kadowaki T., Barrett J.C.: Involvement of p85 in p53-dependent apoptotic response to oxidative stress.Nature391, 707–710 (1998).PubMedCrossRefGoogle Scholar
  356. You H.J., Swanson L., Doetsch P.W.:Saccharomyces cerevisiae possesses two functional homologues ofEscherichia coli endonuclease III.Biochemistry37, 6033–6040 (1998).PubMedCrossRefGoogle Scholar
  357. Żadziński R., Fortuniak A., Biliński T., Grey M., Bartosz G.: Menadione toxicity inS. cerevisiae cells: activation by conjugation with glutathione.Biochem. Mol. Biol. Internat.44, 747–759 (1998).Google Scholar
  358. Zähringer H., Burgert M., Holzer H., Nwaka S.: Neutral trehalse Nth lp ofS. cerevisiae encoded by theNTHI gene is a multiple stress responsive protein.FEBS Lett.412, 615–620 (1997).PubMedCrossRefGoogle Scholar
  359. Zha H., Reed J.C.: Heterodimerization—independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells.J. Biol. Chem.272, 31482–31488 (1997).PubMedCrossRefGoogle Scholar
  360. Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K.J.A.: The oxidative inactivation of mitochondrial electron transport chain components.J. Biol. Chem.265, 16330–16336 (1990).PubMedGoogle Scholar
  361. Zhao M.J., Jung L.: Kinetics of the competitive degradation of deoxyribose and other molecules by hydroxyl radicals produced by the Fenton reaction in the presence of assorbic acid.Free Radicals Res.23, 229–243 (1995).CrossRefGoogle Scholar
  362. Zheng M., Doan B., Schneider T.D, Storz G.: OxyR and SoxRS regulation of fur.J. Bacteriol.181, 4639–4643 (1999).PubMedGoogle Scholar
  363. Zhulin I.B., Johnson M.S., Taylor B.L.: How do bacteria avoid high oxygen concentrations?Biosci. Rep.17, 335–342 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1999

Authors and Affiliations

  • K. Sigler
    • 1
  • J. Chaloupka
    • 1
  • J. Brozmanová
    • 2
  • N. Stadler
    • 3
  • M. Höfer
    • 3
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4
  2. 2.Department of Molecular Genetics, Cancer Research InstituteSlovak Academy of SciencesBratislavaSlovak Republic
  3. 3.Institute of BotanyUniversity of BonnBonnGermany

Personalised recommendations