Plant Molecular Biology Reporter

, Volume 18, Issue 2, pp 133–138 | Cite as

Accessing genes in the tertiary gene pool of rice by direct introduction of total DNA fromZizania palustris (wild rice)

  • M. Abedinia
  • R. J. Henry
  • A. B. Blakeney
  • L. G. Lewin


Transfer of useful genes from wild relatives of crop plants has relied upon successful conventional crossing or the availability of the cloned gene. Co-bombardment of rice callus with total genomic DNA from wild rice (Zizania palustris) and a plasmid containing a gene confirming hygromycin resistance allowed recovery under selection of transgenic plants with grain characteristics from wild rice. Amplified Fragment Length Polymorphism (AFLP) analysis suggested that a significant amount of DNA fromZizania was introduced by this procedure. One plant had 16 of a possible 122Zizania specific AFLP markers detected with the primers used. This approach may have potential for introgression of genes from wild relatives in other cases where highly efficient transformation methods are available.

Key words

Oryza sativa rice wild rice whole genome transformation Zizania palustris 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abedinia M, Henry RJ, Blakeney AB and Lewin L (1997) An efficient transformation system for the Australian rice cultivar, Jarrah. Australian Journal Plant Physiology 24: 133–141.CrossRefGoogle Scholar
  2. Abedinia M, Henry RJ and Clark SC (1998)Potamophila parviflora—R. Br a wild rice from Eastern Australia: distribution and phylogeny. Genetic Resources and Crop Evolution 45: 399–406.CrossRefGoogle Scholar
  3. Birch RG (1997) Problems and strategies for practical application. Plant Transformation 48: 297–326.Google Scholar
  4. Christou P (1997) Rice transformation— Bombardment. Plant Mol Biol 35: 197–203.PubMedCrossRefGoogle Scholar
  5. Finer JJ, Vain P, Jones MW and McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Reptr 11: 323–328.Google Scholar
  6. Hamilton CM (1997) A binary-BAC system for plant transformation with high molecular-weight DNA. Gene 200: 107–116.PubMedCrossRefGoogle Scholar
  7. Harlan JR and Wet JMJD (1971) Towards a rational classification of cultivated plants. Taxon 20: 509–517.CrossRefGoogle Scholar
  8. Hiei Y, Komari T and Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35: 205–218.PubMedCrossRefGoogle Scholar
  9. Jenna KK (1994) Production of intergeneric hybrid betweenOryza sativa L andPorteresia coarctata T. Current Science 67: 744–746.Google Scholar
  10. Ko HL, Cowan DC, Henry RJ, Graham GC, Blakeney AB and Lewin LG (1994) Random amplified ploymorphic DNA analysis of Australian rice (Oryza sativa. L) varieties. Euphytica 80: 179–189.CrossRefGoogle Scholar
  11. Liu B, Liu Z and Li XW (1999) Production of a highly asymmetric somatic hybrid between rice and Zizania latifolio (Griseb): evidence for inter-genomic exchange. Theor and Appl Genet 98: 1099–1103.CrossRefGoogle Scholar
  12. Luthra R, Varsha-Dubey RK, Srivastava S and Kumar S (1997) Microprojectile mediated plant transformation— A bibliographic search. Euphytica 95: 269–294.CrossRefGoogle Scholar
  13. Naredo JR, Juliano AB, Lu BR and Jackson MT (1997) Hybridisation of AA genome rice species from Asia and Australia. 1. Crosses and development of hybrids. Genetic Resources and Crop Evolution 44: 17–23.CrossRefGoogle Scholar
  14. Oelke EA, Porter RA, Grombacher AW and Addis PB (1997) Wild rice-new interest in an old crop. Cereal Foods World 42: 234–247.Google Scholar
  15. Sharma HC (1995) How wide can a cross be. Euphytica 82: 43–64.CrossRefGoogle Scholar
  16. Shimamoto K, Terada R, Izawa T and Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–276.CrossRefGoogle Scholar
  17. Vos P, Hogers R, Blecker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M and Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.PubMedCrossRefGoogle Scholar
  18. Weining S and Langridge P (1991) Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor Appl Genet 82: 209–216.CrossRefGoogle Scholar
  19. Xiao J, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Li J and Yuan L (1996) Genes from wild rice improve yield. Nature 384: 223–224.CrossRefGoogle Scholar

Copyright information

© International Society for Plant Molecular Biology 2000

Authors and Affiliations

  • M. Abedinia
    • 1
  • R. J. Henry
    • 1
  • A. B. Blakeney
    • 2
  • L. G. Lewin
    • 3
  1. 1.Centre for Plant Conservation GeneticsSouthern Cross UniversityLismoreAustralia
  2. 2.BRI AustraliaNorth RydeAustralia
  3. 3.Cooperative Research Centre for Sustainable Rice ProductionYanco Agricultural InstituteYancoAustralia

Personalised recommendations