, Volume 26, Issue 2, pp 484–494 | Cite as

Mechanisms of marsh habitat alteration due toPhragmites: Response of young-of-the-year mummichog (Fundulus heteroclitus) to treatment forPhragmites removal

  • K. W. AbleEmail author
  • S. M. Hagan
  • S. A. Brown


In recent decades, marshes naturally dominated bySpartina spp. have been replaced byPhragmites australis throughout the northeastern United States. We suggest that early in this invasion there was little effect on the fish fauna. As the invasion proceeds, the marsh surface habitat became more altered (i.e., elevated, flattened, reduced water-filled depressions, and reduced standing water), which resulted in a reduction of feeding, reproduction, and nursery function for fishes, especiallyFundulus spp. These potential changes in marsh habitat and function have resulted in numerous attempts to removePhragmites and restoreSpartina spp. To evaluate the response of marsh surface fishes toPhragmites treatment, we examined fish use in the brackish water reaches of Alloway Creek in the Delaware Bay estuary. ReferencePhragmites habitats were compared with referenceSpartina alterniflora-dominated habitats and sites treated (1996–1998) to removePhragmites to restore former vegetation (i.e., restored, now comprised of 100%Spartina). Fish were sampled with an array (n=9 at each site) of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm). Small individuals (mean=17.5, 5–45 mm TL) dominated all pit trap collections. Fish abundance was highest at the restored (catch per unit effort [CPUE]=2.16) andSpartina (CPUE=0.81) sites with significantly lower values atPhragmites (CPUE=0.05) habitats. Samples were dominated by young-of-the-year mummichog,Fundulus heteroclitus (98% of total fish, n=631). The only other fish species collected was spotfin killifish,Fundulus luciae (2% of total catch, n=14), which was only present in restored andSpartina habitats. These observations suggest that the restored marsh is providing habitat (water-filled depressions on the marsh surface) for young-of-the-yearFundulus spp. These marshes are responding favorably to the restoration based on the much greater abundance of fish in restored versusPhragmites habitats and the overall similarity between restored andSpartina habitats.


Salt Marsh Standing Water Marsh Surface Common Reed Marsh Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Able, K. W. 1999. Measures of juvenile fish habitat quality: Examples from a National Estuarine Research Reserve, p. 134–147.In L. R. Benaka (ed.), Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society, Symposium 22, Bethesda, Maryland.Google Scholar
  2. Able, K. W. andM. P. Fahay. 1998. The First Year in the Life of Estuarine Fishes in the Middle Atlantic Bight. Rutgers University Press, New Brunswick, New Jersey.Google Scholar
  3. Able, K. W. andS. M. Hagan. 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans.Estuaries, 23:633–646.CrossRefGoogle Scholar
  4. Able, K. W. andS. M. Hagan. 2003. Impact of common reed,Phragmites australis, on essential fish habitat: Influence on reproduction, embryological development, and larval abundance of mummichog (Fundulus heteroclitus).Estuaries 26:40–50.CrossRefGoogle Scholar
  5. Able, K. W., C. W. Talbot, andJ. K. Shisler. 1983 The spotfin killifish,Fundulus luciae, is common in New Jersey salt marshes.Bulletin of the New Jersey Academy of Science 28:7–11.Google Scholar
  6. Amsberry, L., M. A. Baker, P. J. Ewanchuk, andM. D. Bertness. 2000. Clonal integration and the expansion ofPhragmites australis.Ecological Applications 10:1110–1118.CrossRefGoogle Scholar
  7. Angradi, T. R., S. M. Hagan, andK. W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh:Phragmites vs.Spartina.Wetlands 21:75–92.CrossRefGoogle Scholar
  8. Balon, E. K. 1990. Epigenesis of an epigeneticist: The development of some alternative concepts on the early ontogeny and evolution of fishes.Guelph Ichthological Review 1:1–48.Google Scholar
  9. Bart, D. andJ. M. Hartman. 2000. Environmental determinants ofPhragmites australis expansion in a New Jersey salt marsh: An experimental approach.OIKOS 89:59–69.CrossRefGoogle Scholar
  10. Beck, M. W., K. L. Heck, Jr.K. W. Able, D. Childers, D. Eggleston, B. M. Gillanders, B. Halpern, C. Hays, K. Hoshino, T. Minello, R. Orth, P. Sheridan, andM. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates.Bioscience 51:633–641.CrossRefGoogle Scholar
  11. Blossey, B. andJ. F. McCauley. 2000. A plan for developing biological control ofPhragmites australis in North America.Wetlands Journal 12:23–28.Google Scholar
  12. Byrne, D. M. 1978. Life history of the spotfin killifish,Fundulus luciae (Pisces: Cyprinodontidae), in Fox Creek Marsh, Virginia.Estuaries 4:211–227.CrossRefGoogle Scholar
  13. Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.CrossRefGoogle Scholar
  14. Collins, L. M., J. N. Collins, andL. B. Leopold. 1987. Geomorphic processes of an estuarine marsh: Preliminary results and hypotheses, p. 1049–1072.In V. Gardiner (ed.), International Geomorphology 1986, Part I. John Wiley and Sons, Ltd., New York.Google Scholar
  15. Copp, G. H. andV. Kovac. 1996. When do fish with indirect development become juvenile?Canadian Journal of Fisheries and Aquatic Sciences 53:746–752.CrossRefGoogle Scholar
  16. Deegan, L. A., J. E. Hughes, andR. A. Rountree. 2000. Salt marsh ecosystem support of marine transient species, p. 333–365.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  17. Fell, P., S. P. Weissbach, D. A. Jones, M. A. Fallon, J. A. Zeppieri, E. K. Faison, K. A. Lennon, K. J. Newberry, andL. K. Reddington. 1998. Does invasion of oligohaline tidal marshes by reed grass,Phragmites australis (Cav.) Trin. ex Steud., affect the availability of prey sources for the mummichog.,Fundulus heteroclitus L.?Journal of Experimental marine Biology and Ecology 222:59–77.CrossRefGoogle Scholar
  18. Ferren, W. R., R. E. Good, R. Walker, andJ. Arsenault. 1981. Vegetation and flora of Hog Island, a brackish wetland in the Mullica River, New Jersey.Bartonia 48:1–10.Google Scholar
  19. Fuiman, L. A. andD. M. Higgs. 1997. Ontogeny, growth and the recruitment process, p. 225–250.In R. C. Chambers and E. A. Trippel (eds.), Early Life History and Recruitment in Fish Populations. Chapman and Hall, London, U.K.Google Scholar
  20. Gillianders, B. M., K. W. Able, J. A. Brown, D. B. Eggleston, andP. F. Sheridan. 2003. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: An important component of nurseries.Marine Ecology Progress Series 247:281–295.CrossRefGoogle Scholar
  21. Hanson, S. R., D. T. Osgood, andD. J. Yozzo. 2002. Nekton use of aPhragmites australis marsh on the Hudson River, New York, USA.Wetlands 22:326–337.CrossRefGoogle Scholar
  22. Hardy, Jr.,J. D. 1978. Development of Fishes of the Middle Atlantic Bight, Volume II. FWS/OBS-78/12. U.S. Department of the Interior, Washington, D.C..Google Scholar
  23. Havens, K. J., W. I. Priest, III, andH. Berquist. 1997. Investigation and long-term monitoring ofPhragmites australis within Virginia's constructed wetland sites.Environmental Management 21:599–605.CrossRefGoogle Scholar
  24. Hettler, Jr.,W. F. 1989. Nekton use of regularly-flooded saltmarsh cordgrass habitat in North Carolina, USA.Marine Ecology Progress Series 56:111–118.CrossRefGoogle Scholar
  25. Kneib, R. T. 1984. Patterns of utilization of the intertidal salt marsh by larvae and juveniles ofFundulus heteroclitus (Linnaeus) andFundulus luciae (Baird).Journal of Experimental Marine Biology and Ecology 83:41–51.CrossRefGoogle Scholar
  26. Kneib, R. T. 1997a. The role of tidal marshes in the ecology of estuarine nekton, p. 163–220.In A. D. Ansell, R. N. Gibson, M. Barnes (eds.), Oceanography and Marine Biology: An Annual Review. UCL Press, London, U.K..Google Scholar
  27. Kneib, R. T. 1997b. Early life stages of resident nekton in intertidal marshes.Estuaries 20:214–230.CrossRefGoogle Scholar
  28. Kneib, R. T. andA. E. Stiven. 1978. Growth, reproduction, and feeding ofFundulus heteroclitus (L.) on a North Carolina salt marsh.Journal of Experimental Marine Biology and Ecology 31: 121–140.CrossRefGoogle Scholar
  29. Marks, M., B. Lapin, andJ. Randall. 1994.Phragmites australis (P. communis): Threats, management and monitoring.Natural Areas Journal 4:285–294.Google Scholar
  30. Marteinsdottir, G. 1991. Early life history of the mummichog (Fundulus heteroclitus): Egg size variation and its significance in reproduction and survival of eggs and larvae. Ph.D. Dissertation, Rutgers University, New Brunswick, New Jersey.Google Scholar
  31. Meredith, W. H. andV. A. Lotrich. 1979. Production dynamics of a tidal creek population ofFundulus heteroclitus.Estuarine and Coastal Marine Science 8:99–118.CrossRefGoogle Scholar
  32. Meyer, D. L., J. M. Johnson, andJ. W. Gill. 2001. Comparison of nekton use ofPhragmites australis andSpartina alterniflora marshes in the Chesapeake Bay, USA.Marine Ecology Progress Series 209:71–84.CrossRefGoogle Scholar
  33. Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, andS. Findlay. 2000. A comparison ofPhragmites australis in freshwater and bracklish marsh environments in North America.Wetlands Ecology and Management 8:89–103.CrossRefGoogle Scholar
  34. Minello, T. J. 1999. Nekton densities in shallow estuarine habitats of Texas and Louisiana and the identification of essential fish habitat, p. 43–75.In L. R. Benaka (ed.), Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society, Symposium 22, Bethesda, Maryland.Google Scholar
  35. Minello, T. J., K. W. Able, M. P. Weinstein, andC. G. Hays. 2003. Salt marshes as nurseries for nekton: Testing hypotheses on density, growth, and survival through meta-analysis.Marine Ecology Progress Series 246:39–59.CrossRefGoogle Scholar
  36. National Oceanic and Atmospheric Administration (NOAA). 1996. Magnuson-Stevens Fishery Conservation and Management Act amended through 11 October 1996. National Marine Fisheries Service, National Ocenic and Atmospheric Administration Technical Memorandum NMFS-F/SPO-23. U.S. Department of Commerce, Washington, D.C.Google Scholar
  37. Niering, W. A. andR. S. Warren. 1977. Vegetation patterns and processes in New England salt marshes.Bioscience 30:301–307.CrossRefGoogle Scholar
  38. Osgood, D. T., D. Yozzo, R. Chambers, D. Jacobson, T. Hoffman, andJ. Wnek. 2003. Tidal hydrology and habitat utilization by resident nekton inPhragmites and non-Phragmites marshes.Estuaries 26:522–533.CrossRefGoogle Scholar
  39. Psuty, N. P., M. P. De Luca, R. Lathrop, K. W. Able, S. Whitney, andJ. F. Grassle. 1993. The Mullica River—Great Bay National Estuarine Research Reserve: A unique opportunity for research, preservation and management, p. 1557–1568.In O. T. Magoon, W. S. Wilson, H. Converse, and L. T. Tobin (eds.), Coastal Zone 1993, Volume 2. Proceedings of the Eighth Symposium on Coastal and Ocean Management. American Society of Civil Engineers, New York.Google Scholar
  40. Raichel, D. L., K. W. Able, andJ. M. Hartman. 2003. The influence ofPhragmites (common reed) on the distribution, abundance, and potential prey of a marsh resident fish in the Hackensack Meadowlands, New Jersey.Estuaries 26:511–521.CrossRefGoogle Scholar
  41. Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction.Environmental Management 8:141–150.CrossRefGoogle Scholar
  42. Rooth, J. E. andJ. C. Stevenson. 2000. Sediment deposition inPhragmites australis communities: Implications for coastal areas threatened by rising sea level.Wetlands Ecology and Management 8:173–183.CrossRefGoogle Scholar
  43. Rooth, J. E., andL. Windham. 2000.Phragmites on death row: Is biocontrol really warranted?Wetland Journal 12:29–37.Google Scholar
  44. Rozas, L. P., C. C. McIvor, andW. E. Odum. 1988. Intertidal rivulets and creek banks: Corridors between tidal creeks and marshes.Marsh Ecology Progress Series 47:303–307.CrossRefGoogle Scholar
  45. Rozas, L. P. andW. E. Odum 1987, Use of tidal freshwater marshes by fishes and macrofaunal crustaceans along a marsh stream-order gradient.Estuaries 15:171–185.Google Scholar
  46. Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed,Phragmites australis, into North America.Proceedings National Academy of Sciences 99:2445–2449.CrossRefGoogle Scholar
  47. Talbot, C. W. andK. W. Able 1984. Composition and distribution of larval fishes in New Jersey high marshes.Estuaries 7:434–443.CrossRefGoogle Scholar
  48. Taylor, M. H., L. DiMichele, andG. J. Leach. 1977. Egg stranding in the life cycle of the mummichog,Fundulus heteroclitus (Pisces: Cyprinodontidae).Copeia 1979:291–297.CrossRefGoogle Scholar
  49. Teo S. L. H. andK. W. Able. 2003. Growth and production of the common mummichog,Fundulus heteroclitus, in a restored salt marsh.Estuaries 26:51–63.CrossRefGoogle Scholar
  50. Teo, S. L. H. and K. W. Able. In press. Habitat use and movement of the mummichog (Fundulus heteroclitus) in a restored salt marsh,Estuaries.Google Scholar
  51. Tupper, M. andK. W. Able 2000. Movements and food habits of striped bass (Morone saxatilis) in Delaware Bay (USA) salt marshes: Comparison of a restored and a reference marsh.Marine Biology 137:1049–1058.CrossRefGoogle Scholar
  52. Valiela, I., J. E. Wright, J. M. Teal, andS. B. Volkmann. 1977. Growth, production, and energy transformations in the saltmarsh killifishFundulus heteroclitus.Marine Biology 40:135–144.CrossRefGoogle Scholar
  53. Wainright, S. C., M. P. Weinstein, K. W. Able, andC. A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass (Spartina) and the common reed (Phragmites) to brackish marsh food webs.Marine Ecology Progress Series 200:77–91.CrossRefGoogle Scholar
  54. Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, G. C. Riling, andR. A. Fertik. 2001. Rates, patterns and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River.Estuaries 24:90–107.CrossRefGoogle Scholar
  55. Weinstein, M. P. andJ. H. Balletto. 1999. Does the common reed,Phragmites australis affect essential fish habitat?Estuaries 22:63–72.CrossRefGoogle Scholar
  56. Weinstein, M. P., J. H. Balletto, J. M. Teal, andD. F. Ludwig. 1997. Success criteria and adaptive management for a largescale wetland restoration project.Wetlands Ecology and Management 4:111–127.CrossRefGoogle Scholar
  57. Weinstein M. P., K. R. Phillip, andP. Goodwin 2000. Catastrophes, near-catastrophes, and the bounds of expectation: Success criteria for macroscale marsh restoration, p. 777–804.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  58. Weinstein, M. P., J. M. Teal, J. H. Balletto, andK. A. Strait. 2001. Restoration principles emerging from one of the world's largest tidal marsh restoration projects.Wetland Ecology and Management 9:387–407.CrossRefGoogle Scholar
  59. Wiegert, R. G. andL. R. Pomeroy. 1981. The salt-marsh ecosystem: A synthesis, p. 219–230.In L. R. Pomeroy and R. G. Weigert (eds.), The Ecology of a Salt Marsh. Springer-Verlag, New York.Google Scholar
  60. Windham, L. 1995. Effects ofPhragmites australis invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey. Masters Thesis, Rutgers University, New Brunswick, New Jersey.Google Scholar
  61. Windham, L. 1999. Microscale spatial distribution ofPhragmites australis (common reed) invasion intoSpartina patens (salt hay)-dominated communities in brackish tidal marsh.Biological Invasions 1:137–148.CrossRefGoogle Scholar
  62. Windham, L. andR. Lathrop. 1999. Effects ofPhragmites australis (common reed) invasion on above-ground biomass and soil properties in brackish, tidal marsh of the Mullica River, New Jersey.Estuaries 22:927–935.CrossRefGoogle Scholar
  63. Zar, J. H. 1984. Biostatistical Analysis, 2nd edition. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar

Sources of Unpublished Materials

  1. Nemerson, D. M. unpublished data. National Aquarium in Baltimore, Pier 3/501 East Pratt Street, Baltimore, Maryland 21202-3194.Google Scholar
  2. Sakowicz, G. P. unpublished data Rutgers University Marine Field Station, 800 Great Bay Boulevard, Tuckerton, New Jersey 08087.Google Scholar

Copyright information

© Estuarine Research Federation 2003

Authors and Affiliations

  1. 1.Marine Field Station, Institute of Marine and Coastal SciencesRutgers UniversityTuckerton

Personalised recommendations